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Abstract—In many practical wireless systems, the Signal-to-
Interference-and-Noise Ratio (SINR) that is applicable to a
certain transmission, referred to as Channel State Information
(CSI), can only be learned after the transmission has taken place
and is thereby outdated (delayed). For example, this occurs under
intermittent interference. We devise the backward retransmission
(BRQ) scheme, which uses the delayed CSIT to send the optimal
amount of incremental redundancy (IR). BRQ uses fixed-length
packets, fixed-rate R transmission codebook, and operates as
Markov block coding, where the correlation between the adjacent
packets depends on the amount of IR parity bits. When the
delayed CSIT is full and R grows asymptotically, the average
throughput of BRQ becomes equal to the value achieved with
prior CSIT and a fixed-power transmitter; however, at the
expense of increased delay. The second contribution is a method
for employing BRQ when a limited number of feedback bits
is available to report the delayed CSIT. The main novelty is
the idea to assemble multiple feedback opportunities and report
multiple SINRs through vector quantization. This challenges
the conventional wisdom in ARQ protocols where feedback bits
are used to only quantize the CSIT of the immediate previous
transmission.

I. INTRODUCTION

A. Motivation

Channel State Information at the Transmitter (CSIT) is
essential for achieving high spectral efficiency in wireless
systems. Ideally, CSIT should be known before the transmis-
sion has started, as in that case the transmitter can optimize
the parameters of the transmission, such as the power used
or the precoding that is applied in case of Multiple Input
Multiple Output (MIMO) transmission. In Frequency Division
Duplex (FDD) systems, provision of CSIT necessarily happens
through a feedback from the receiver. On the other hand, Time
Division Duplex (TDD) systems can utilize channel reciprocity
and the transmitter can obtain CSIT by measuring a signal
received in the opposite direction.

Reciprocity loses its utility when there is interference.
Consider the scenario on Fig. 1, where A is the transmitter,
B is the receiver and C is an interferer that affects B.
By assuming that A knows the noise power at B, channel
reciprocity enables A to estimate the Signal-to-Noise Ratio
(SNR), denoted γAB , at which B receives the signal of A.
When the interferer C is active, the quantity that is relevant for
the transmitter is the Signal-to-Interference-and-Noise Ratio
(SINR) and A has no way of knowing it unless B explicitly
reports either the Interference-to-Noise Ratio (INR) γCB or
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Fig. 1. An example of communication scenario in which it is not possible to
know the conditions at the receiver B before the transmission from A takes
place use to intermittent interference from C.

the actual SINR. Hence, the notion of CSIT is broader and
incorporates knowledge about the exact conditions at which
the signal has been received, including the interference. In
many practical scenarios, the interference is intermittent and
B cannot know whether/which interferer will be active when
the actual transmission of A takes place. Furthermore, even if
there is no interference and the channel is TDD, there could
not have been a reliable way to measure the SNR γAB before
the transmission, for example due to the scheduling structure
in the system or fast channel dynamics. On the other hand,
after A has completed its transmission, B can send feedback
to A about what the actual received SNR or SINR had been
during that transmission. We refer to this as a posterior CSIT
or delayed CSIT, as opposed to prior CSIT, known before the
actual transmission.

The performance of the communication link that operates
with posterior CSIT is certainly inferior compared to the link
that operates with prior CSIT, as there are certain parameters
that cannot be optimally adapted if CSIT is not known before
the transmission. If CSIT is not available before the transmis-
sion, then the power that A uses for transmission cannot follow
the water filling principle and thus leads to irrecoverable loss,
since at the time of getting CSIT, the power has already
been used. In other words, if the channel gain is below the
threshold, then the power is irreversibly lost to a bad channel
state. Similarly, the lack of prior CSIT in MIMO transmission
prevents the sender to have optimal spatial focusing and power
is irreversibly lost in spatial dimensions that are not optimal.
As the last example, multiuser diversity is not recoverable
when the posterior CSIT is available, because prior CSIT is
used to select the user with the best channel conditions and



transmit data to her. When the user is selected blindly, the
power may be irreversibly lost to a “bad” user.

In this paper we introduce backtrack retransmission (BRQ),
capable to use the delayed CSIT in a way that approaches
the average throughput achieved with prior CSIT and fixed
transmission power. A prominent feature of BRQ is that it
adapts the data rate using a fixed rate−R codebook at the
physical layer and fixed packet length, but only changing
the amount of parity bits based on the delayed CSIT. Thus,
BRQ operates as Markov block coding, where the correlation
between the adjacent packets depends on the amount of IR
parity bits. By selecting asymptotically high rate R and when
the delayed CSIT is full, the average throughput becomes
equal to the one with prior CSIT. However, this happens at
the expense of asymptotically increased delay. The extension
of BRQ to the case with a finite number of feedback bits
gives rise to a novel transmission scheme: instead of sending
feedback after each packet, the feedback bits from multiple
slots are assembled and, using vector quantization, provide
information relevant to a number of packets transmitted in
the past. This challenges the conventional wisdom in ARQ
protocols, in which the content of the feedback bits is only
associated with the transmission immediately preceding those
bits. The price paid by the BRQ is in the increased delay.

B. Related Work

The problem of HARQ over block fading channels has been
addressed in many works, but two recent works stand out in
their relation to the current work, [1] and [2], respectively.
The scenario considered in [1] is essentially different from our
scenario of interest, as the CSIT in is not delayed, but it arrives
through a finite number of bits as a prior CSIT, such that the
transmitter can adapt the power. The reference [1] provides
good insights on the role of the feedback as a CSIT quantizer,
but the feedback bits are associated only with the immediately
preceding transmission and it is not allowed to accumulate
feedback bits over consecutive slots, as we do in the quantized
scheme in Section IV. The scenario considered in [2] is
directly related to the one treated in this paper, as the authors
assume that at the time of transmission, the received CSIT is
not correlated with the actual conditions on the channel. The
IR bits in [2] are sent in a standalone way, using variable-
length packets — the authors of [2] correctly point out that
this could be a problem in multiuser systems and therefore they
propose a workaround by grouping multiple transmissions into
fixed-length resources. On the other hand, our approach works
with fixed-length packets/slots at the physical layer, such that
it naturally follows the modus operandi of the contemporary
wireless systems, such as e. g. LTE [3]. The method in [2]
uses rate adaptation at the physical layer, while in our case the
physical layer parameters are fixed and a single combination
of coding/modulation of rate R is applied. Regarding the
implementation of IR, both [1] and [2] describe it implicitly,
through sufficient accumulated mutual information, while our
scheme is based on explicit method for creating the IR bits
through random binning. The approach in [2] gives rise to a

complex optimization problem for determining the IR bits and
the rate, while in our method this is straightforwardly based
on the mechanism of random binning. Finally, we extend our
method with delayed CSIT to the case with finite-bit feedback,
while [2] treats only the case of full delayed CSIT.

We remark here that the issue of delayed CSIT has recently
sparkled a significant interest in terms of improvements that
can be achieved in terms of Degrees of Freedom at high SNRs
[4] [5]. However, that line of work does not deal with HARQ
protocols and is directed towards multi-user scenarios, while
in our case we consider relatively low SNR and a single link.

II. SYSTEM MODEL AND ILLUSTRATIVE EXAMPLES

A. System Model

We consider a single-user channel with block fading and
Gaussian noise. From this point on we use the term SNR, as
we will not explicitly consider interference and attribute the
channel variation to fading, but we keep in mind that the con-
cepts are applicable to SINR. TX transmits to RX in slots, each
slot contains a full packet and takes N channel uses. The value
of N is fixed, unless stated otherwise, and sufficiently large to
offer reliable communication that is optimal in an information-
theoretic sense. The complex N−dimensional received signal
vector in slot t is:

yt =
√
γtxt + zt (1)

where xt is the transmitted signal normalized to have unit
power and zt is a complex random vector with unit variance
that represents the contribution of the noise and the interfer-
ence in slot t. Hence, the SNR in the t−th slot is equal to
γt, drawn independently from a probability density pΓ(·) and
is unknown to TX prior to the transmission. We note that
(1) assumes a fixed transmission power, which is reasonable
considering the fact that we always assume that γt is unknown
when the transmission takes place; more elaboration will
follow.

TX uses a single code/modulation combination of rate R
and thus sends a total of b = NR data bits in the packet. The
maximal rate that the channel TX-RX can support in slot t is:

C(γt) = log2(1 + γt) [bits/c. u.] (2)

If R ≤ C(γ) then RX receives the packet correctly, otherwise
an outage occurs. Upon outage, RX buffers the received signal
in order to use it in future decoding attempts. An efficient
way to treat the outage is to use incremental redundancy (IR)
[1]: TX sends additional r < b parity bits to RX, which RX
can combine with the signal received during the previous N
channel uses and thus possibly recover the original packet. If
TX uses M channel uses to transmits the r additional bits and
eventually the packet is decoded correctly, then the data rate
achieved between TX and RX is Rr = N

N+MR. Note that in
general M 6= N . An optimal incremental redundancy would
select the retransmitted bits in such a way that if the accumu-
lated mutual information at the receiver becomes sufficient,
the signal is decoded [1] [2]. The interesting question is how
is Rr related to the channel capacity C(γ)?



B. Two Examples of Incremental Redundancy

For the first example, TX sends the packet using a slot
with N channel uses and learns the SNR γ after the slot. The
value of γ is such that R > C(γ) and an outage occurs. For
this example we deviate from our model in two ways: (1)
we temporarily break away from the fixed slot structure and
assume that the retransmission from TX can take M channel
uses, where M 6= N (as in [2]); (2) the SNR during those
M channel uses is constant and equal to γ, such that TX can
perfectly choose the transmission rate used to send the IR bits
without experiencing outage. By knowing γ, TX knows that
RX has a side information about the transmitted packet that
amounts to NC(γ) < NR = b bits, such that the minimal
amount of parity bits that A should provide to B in order to
decode the packet is:

r = N(R− C(γ)) (3)

The operational interpretation of the minimal number of parity
bits bears resemblance to random binning, introduced in the
Slepian-Wolf problem of distributed source coding [6]. In the
Slepian-Wolf problem, the amount of information that one
node sends depends on the knowledge of the side information
that the other node provides to the receiver. In our setting with
a retransmission, TX can act as two different senders separated
in time: after the first transmission, TX learns from the CSIT
the amount of side information available at RX, adjusts the
amount of parity bits and sends them to RX. Specifically, TX
divides the 2b messages into 2r bins, where the number of
bins is adjusted to the received CSIT, and X sends to RX r
bits to describe to which bin the previous message belongs
to. If RX decodes the r bits correctly, it combines the bin
information with the side information present at RX from the
first N channel uses and, RX can decode the original b bits
correctly almost surely as N →∞.

The rate at which TX sends the redundancy bits is R′ =
C(γ), such that number of channel uses for retransmission is:

M =
r

R′
=
N(R− C(γ))

C(γ)
(4)

and the equivalent rate achieved from TX to RX is:

RTX−RX =
b

N +M
=

NR

N + N(R−C(γ))
C(γ)

= C(γ) (5)

which is the same as if TX knew the CSIT a priori. We
can conclude that, if the channel is constant during the
original rate-R transmission and the incremental redundancy
transmission, but TX can only learn the CSIT after the first
transmission, the achievable rate between TX and RX is:

RAB = min{R,C(γ)} (6)

Besides the inability to adapt the power, the penalty for not
knowing the prior CSIT can occur due to a low value of R,
i. e. TX cannot take advantage of the very high SNRs.

But a careful reader can object to the consistency of the
previous example. First, to send the IR bits, TX uses a prior
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Fig. 2. An example of backtrack decoding with posterior CSIT. In the i−th
slot, di are the new bits and ri−1 are the redundancy bits, used as a bin
index to decode the transmission in slot i− 1.

CSIT, such that the example cannot cover e. g. a scenario with
intermittent interferer. Knowing CSIT in advance also opens
the possibility for employing power control, as in [1]. On the
other hand, we persist to the assumption that the channel must
be unknown at the time of transmission and ask whether we
can still recover the rate. Furthermore, the example violates the
required fixed-slot structure and a single coding/modulation
combination with a fixed rate.

Therefore, as a second example assume that TX sends to
TX in slots with fixed size of N channel uses. The SNR from
slot to slot is uncorrelated and available to TX only after the
transmission. Let TX always apply the same transmission rate
R and let us observe three consecutive slots with SNRs equal
to γ1, γ2, γ3. This is illustrated on Fig. 2. We deliberately
select the SNRs to satisfy

C(γ1), C(γ2) < R C(γ3) > R (7)

such that outage occurs in the first two slots and, eventually,
the transmission of TX can be decoded in the third slot. TX
transmits b = NR new bits in the first slot, denoted by d1.
For the second slot, TX knows γ1 and sends again b = NR
data bits, but the message is prepared in the following way:
• The first r1 = N(R−C(γ1)) bits are parity bits, denoted

by r1, used to describe the bin index that can be combined
with the signal from slot 1 to recover the bits d1.

• The remaining b− r1 = NC(γ1) bits, denoted by d2 are
new bits transmitted in the second slot.

It must be noted that the parity bits and the new bits are only
separable in a digital domain, but not at the physical layer
i. e. the whole packet, sent at rate R, needs to be decoded
correctly and then RX extracts the parity bits and the new bits.
The insertion of parity bits creates dependency between two
adjacent packet transmissions, such that the scheme effectively
applies Markov block coding.

Coming back to the example, outage also occurs in the
second slot, such that the message in the third slot consists



of r2 = N(R−C(γ2)) redundancy bits r2 and d3 = NC(γ2)
new bits d3. Note that, according to the illustration on Fig. 2,
in the example r1 < r2, which means that γ2 < γ1. As
C(γ3) > R, RX decodes the message slot 3 and recovers d3

and r2. It then uses r2 as incremental redundancy to decode
the transmission in slot 2 and recover d2 and r1. Finally, RX
uses r1 to decode the transmission from slot 1 and recover
d1.

The average rate is R̄ = b1+b2+b3
3N , which results in

R̄ =
R+ C(γ1) + C(γ2)

3
(8)

The average rate that could have been achieved over the three
slots if the CSIT were known a priori is:

R̄prior =
C(γ3) + C(γ1) + C(γ2)

3
(9)

Again, a loss compared to prior CSIT can occur due to low
R, but otherwise the data rates that are achievable with prior
CSIT can be recovered with delayed CSIT.

The second example illustrates the central proposal in this
paper, IR with backtrack retransmission (BRQ). We note that
power adaptation cannot help under the assumption that the
SNR γt is unknown and uncorrelated with γt−1 at the time of
transmission and here is a sketch of the argument to support
this. Referring to Fig. 2, it should be noted that RX does not
have any side information about the bits r1 and r2, since they
represent the minimal amount of information that needs to be
retransmitted. Therefore, the information carried in r1 and r2

is new in the same sense that the information in d1,d2,d3 is
new. Hence, each transmitted packet carries equal amount of
NR new information bits and, since the channel is not known
in advance and for symmetry reasons, the transmission power
should be equal in each slot.

III. BACKTRACK RETRANSMISSION (BRQ) WITH FULL
CSIT

Here we specify the BRQ protocol with full CSIT. TX sends
to RX using a codebook of rate R and the minimal SNR
required to decode it is:

γR = C−1(R) = 2R − 1 (10)

We pick the system at slot t that has SNR of γt, unknown to
TX prior to the transmission. At the end of the slot t− 1, RX
sends the value γt−1 to the TX, such that when slot t starts,
both TX and RX know γt−1, γt−2, . . . In addition, RX knows
γt, as we assume coherent reception. It is assumed that the last
slot in which the receiver has successfully decoded the packet
is t − L, where L > 1 such that γt−L ≥ γR and γt−l < γR
for l = 2, 3, . . . L− 1. Operation in slot t:
• Transmitter side:
TX-1) Receive the value of γt−1.
TX-2) If γt−1 ≥ γR, fetch NR new bits and transmit them

at rate R.
TX-3) Else γt−1 < γR and create the bin, consisting of

N(R − C(γt−1)) parity bits and fetch NC(γt−1)

new bits. Concatenate the parity and the new bits
into a NR−bit packet and send at rate R.

• Receiver side:
RX-1) If γt−1 < γR, store the received signal yt in

memory for later use.
RX-2) Else, decode the packet, set l = 0 and while l < L

do the following:
a) From the packet decoded in slot (t − l) extract

the parity bits and the new bits.
b) Use the parity bits from slot (t−l) and the stored

yt−l−1 to successfully decode the transmission
of TX from slot (t− l − 1);

c) Set l = l + 1.
RX-3) Send γt to TX.

Note that whenever TX receives feedback γt−1 > γR, it is
treated as an ACK. In the BRQ protocol, the decoder buffers
the received signals until a slot with γt−1 > γR and then
decodes all stored transmissions. The stochastic behavior of
the protocol can be described by a renewal reward process [1],
in which a renewal occurs in a slot with γt−1 > γR. The
reward is calculated as the total number of information bits,
excluding the parity bits, that RX decodes in the slot at which
a renewal occurs.

Lemma 1: Let γt−L, γt ≥ γR with L > 0 and γt−l < γR
for 0 < l < L. Then the reward in slot t is:

ρt = N

(
R+

L−1∑
l=1

C(γt−l)

)
(11)

where N is the number of channel uses per slot.
Proof: Since γt−l < γR for 0 < l < L, from step TX-

3 of the protocol it follows that the packets transmitted in
slot (t − j) for 0 ≤ j < L − 1 will contain parity bits and
new bits. The number of parity bits sent in slot (t − j) is
N [R − C(γt−j−1)], such that the number of new bits in slot
(t− j) is NC(γt−j−1). Summing up the new bits in the slots
t− L+ 1, t− L+ 2, . . . , t results in (11).

Theorem 1: Let TX transmit data to RX using a fixed rate
R, with full CSIT available a posteriori and using BRQ. The
SNR in each slot is drawn independently from pΓ(γ). Then
the average rate is:

R̄ =

∫ γR

0

pΓ(γ)C(γ)dγ +R

∫ ∞
γR

pΓ(γ)dγ (12)

Proof: Let us consider another system, termed R−limited
protocol, in which TX knows γt at the start of the slot t
and uses a fixed transmission power. The R−limited protocol
adapts the rate in the following way:

Rt = max{C(γt), R} (13)

i. e. it uses the instantaneous channel rate if γt < γR and
otherwise rate R. The average rate of the R−limited protocol
is straightforwardly given by (12).

We observe the performance of the R−limited protocol and
BRQ with full CSI on the same set of L+1 consecutive slots.
The SNRs are selected as γt−L, γt ≥ γR and γt−l < γR for



all l = 1 . . . L− 1 i. e. these are slots between two successful
decode events for the BRQ protocol. From Lemma 1 it follows
that the reward collected for slots t− l, with l = 0 . . . L−1 is
identical for BRQ and for the R−limited protocol. Since this
is valid for any set of SNRs between two decode events in
BRQ, the average rate of the BRQ protocol and the R−limited
protocol are identical, which proves the theorem.

An interesting feature of BRQ is that it adapts the rate by
using a single transmission codebook, while the R−limited
protocol needs to apply a different codebook for different γ.
The adaptation in BRQ is done in digital domain, through
the adaptive number of parity bits. Therefore, between two
renewals, BRQ operates as Markov block coding in which the
statistical dependence between the packets in slots l and l+ 1
depends on the posterior CSIT received for slot l.

However, BRQ is able to recover the rate achievable by the
prior CSIT at the expense of increased delay. We define the
delay of a bit that is transmitted as a new bit in slot t and
decoded in slot t + L to be L slots. We do not define delay
for a parity bit. For example, in slot t TX sends NC(γt−1)
new bits and N [R − C(γt−1)] parity bits. If γt+l < γR for
0 ≤ l < L and γL ≥ γR, then the delay for the new bits sent
in slot t is L. On the other hand, the delay for all the bits
sent in the R−limited adaptation protocol is zero. In order to
calculate the average delay, let us define:

pR =

∫ ∞
γR

pΓ(γ)dγ (14)

The time that a given bit spends in the system has a geometric
distribution and the average delay is given by:

τ̄ =
pR

1− pR
[slots] (15)

and increases with R.

IV. BRQ WITH QUANTIZED CSIT
In this section we investigate how to use the idea of

backtrack retransmission when a finite number of F bits are
available after each slot. We devise a strategy that sacrifices
the delay performance in order to efficiently use the feedback
bits and enable backtrack retransmissions. Note that if the F
bits that follow the t−th slot are used to report a quantized
value of γt, then this is a scalar quantization. Our approach is
to assemble LF bits and jointly report the quantized versions
of γt, γt+1, . . . γt+L−1 after the slot (t+ L− 1).

The transmission strategy can be specified as follows. We
group the transmission slots into blocks of L slots, where
L is sufficiently large. We then differentiate between odd
and even blocks, such that (1, i) is the i−th odd block and
(2, j) is the j−th even block. The l−th slot of an odd (even)
block will be referred to as l−th odd (even) slot. The odd
and the even blocks are interleaved in time, such that the
sequence is (1, 1), (2, 1), (1, 2), (2, 2), (3, 1), . . ., see Fig. 3.
Let us assume that the communication starts in block (1, 1)
and TX transmits new data bits in each slot of the block
(1, 1), such that in total LNR new bits are transmitted. The
LF feedback bits of block (1, 1) are not used, which is a
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Fig. 3. Backtrack retransmission with vector quantization of CSIT. The LF
feedback bits in the even (odd) block are used to report the SNRs in the
previous odd (even) block. There are 2L BRQ processes running in parallel,
each associated with one of the L even or odd slots. Two processes are
illustrated, associated with the odd slots 1 and 2, respectively.

waste that becomes negligible asymptotically, as the number
of observed blocks goes to infinity. RX records the SNRs of
each of the L slots during block (1, 1). Specifically, we denote
by γ1,i,l the SNR in the l−th slot of the i−th odd block.
At the end of block (1, 1), B performs vector quantization
of γ1,1,1, γ1,1,2, · · · γ1,1,L and uses the LF feedback bits to
report two different messages: (a) in which slots l of block
(1, 1) the decoding was successful, i. e. γ1,1,l ≥ γR, and
(b) the quantized SNRs γ̂1,1,1, γ̂1,1,2, · · · γ̂1,1,L. These bits are
transmitted to TX during the L feedback opportunities of the
even block (2, 1), as denoted on Fig. 3. TX recovers the
distorted versions of the SNRs. If TX learns that γ1,1,l ≥ γR,
TX sends NR new bits in slot (1, 2, l). Otherwise, γ1,1,l < γR
and TX prepares NR1,1,l parity bits and NR−NR1,1,l new
bits and transmits them during the slot (1, 2, l). The choice
of R1,1,l depends on the received value γ̂1,1,l as well as the
fidelity criterion used for quantization, as explained below.
During the first even block (2, 1), TX sends new bits in all L
slots, unrelated to the transmissions in block (1, 1).

From the description above it can be inferred that TX runs
2L instances of BRQ in parallel, for the L even and the L odd
slots, respectively. For example, the BRQ process denoted by
(1, ∗, l) is associated with the l−th odd slot. Let us observe
the l−the odd slot (1, ∗, l) and assume successful decoding
occurs in block j (slot (1, j, l)) and the next one in block
j+J (slot (1, j+J, l)). Then, using backtrack, RX decodes the
signals received in slots (1, j + 1, l), (1, j + 2, l), · · · (1, J, l).
The operation is analogous for the even slots and the BRQ
operation within the l even/odd slots proceeds according to
the description in the previous section.

The key to this operation is how to perform the quantization.
By definition, each SNR γl is non-negative, and for the
quantization we put the following fidelity criterion:

γl ≥ γ̂l − d (16)

where d is a positive constant distortion value. This is a rather
heuristic criterion, while we will briefly address the problem



of optimal criterion in Section VI. The motivation for (16)
can be explained as follows. When TX observes γ̂l it knows
that this is not the correct value, but it is desirable to know a
lower bound on the true γl, such that TX can be sure that the
amount of parity bits sent will be equal or larger than what is
minimally required to recover the failed transmission in slot
l. Thus, the number of parity bits that TX sends to RX for
recovering the transmission in the l−th slot is:

N(R− C(γ̂l − d)+) (17)

where (x)+ = max{x, 0}. With a slight abuse of the notation,
we denote the next slot of the BRQ process by (l + 1), such
that the amount of new bits sent in the (l + 1)−th slot is:

NC((γ̂l − d)+) (18)

If we look at a single BRQ instance, then we can use the
analysis of the previous section, such that the reward in the
slot t in which decoding occurs (Lemma 1) can be written as:

ρt = N

(
R+

L−1∑
l=1

C((γ̂t−l − d)+)

)
(19)

Let p(γ̂|γ) be a conditional probability distribution used for
quantization that satisfies the fidelity criterion (16). Recall that
we have designed the feedback to tell to TX in which slots
decoding has occurred i. e. γ ≥ γR, while for the remaining
slots TX decides the number of parity bits based on γ̂.

The probability that a transmission is decoded is pR and
the decoding events from slot to slot are independent. For
sufficiently large block length L, the number of bits required
to describe the slots in the block in which decoding occurred
is LH(pR), where H(·) is the entropy function. Hence, the
number of bits available for the vector-quantized versions of
the SNRs occurring in a block is L(F−H(pR)) or F−H(pR)
bits per slot i. e. SNR value.

The probability density function qR(γ) that should be used
for quantization is different from the original distribution of the
SNR pΓ(γ), as we only need to quantize the values γ < γR.
Note that qR(γ) depends on the choice of R. Specifically:

qΓ(γ) =
pΓ(γ)

1− pR
I(γ < γR) (20)

where the indicator function I(x < y) = 1 if x < y and is
0 otherwise. We denote by SR(d) the rate distortion function
computed for qR(γ) and using the fidelity criterion (16), we
can establish the following relation:

d = S−1
R (F −H(pR)) (21)

Using similar reasoning as in Theorem 1, considering that
the 2L BRQ instances are statistically equal and over a long
period the waste of the unused feedback in the first block
disappears, we can state the following:

Theorem 2: Let TX transmit data to RX using a fixed rate
R. Let there be F feedback bits per slot and RX assembles
the feedback bits of L blocks. Part of the LF bits are used
to report in which slots there was a decoding event and the

remaining bits are used to report quantized values of the SNRs
to TX. Let p(γ̂|γ) be a conditional distribution that satisfies
the fidelity criterion (16) and pΓ(γ) be the density of SNR in
each slot. Then the average rate is:

R̄ =

∫ γR

γ=0

∫
γ̂

p(γ̂|γ)pΓ(γ)C((γ̂l−d)+)dγ̂dγ+R

∫ ∞
γR

pΓ(γ)dγ

(22)
where d = S−1

R (F −H(pR)).
As an example, we can consider the Rayleigh fading for

which pΓ(γ) = 1
Γe
− γΓ . Quantization of the exponential distri-

bution with fidelity criterion (16) has been considered in [7].
The derivation of the rate distortion function SR for given
R is a problem on its own and not of direct interest in this
initial paper. Instead, we use the F − H(pR) bits per SNR
in a suboptimal way, making a vector quantization according
to pΓ(γ). This is clearly suboptimal as RX reports to TX
also quantized versions of the SNR values γ > γR, which
is redundant. Therefore, the distortion computed accordion to
the result from [7] represent an upper bound on the distortion
that can be achieved if we (properly) quantize according to
qR(·):

d ≤ Γ · 2−(F−H(pR)) (23)

As R increases, pR and H(pR) decrease, while qR(·) becomes
better approximated by pΓ(·), such that the upper bound
in (23) becomes tight.

V. NUMERICAL ILLUSTRATION

We evaluate BRQ by assuming Rayleigh block fading,
independent from slot to slot. Fig. 4 depicts the average rate
(average throughput) of various schemes as a function of the
mean SNR Γ. For each Γ, the average rate is normalized
by the optimal average rate that can be achieved if CSIT is
known a priori and water filling is applied. Two schemes with
posterior CSIT are evaluated, full CSIT and quantized CSIT
with F = 1 bit per SNR, respectively. For each scheme, two
different transmission rates are chosen, R = log2(1 + 2Γ)
and R = log2(1 + 3Γ), respectively. Note that by such a
choice, we are fixing the decoding probability to pR = e−2

and pR = e−3, respectively. The scheme with quantized
CSIT is evaluated by using the rate distortion function of the
exponential distribution, such that d is determined according
to (21), which is suboptimal. As a reference, we have also
plotted the average rate when full CSIT is known a priori, but
no water filling (fixed power) is applied. When full CSIT is
available and the transmission rate R is sufficiently high, then
the knowledge of posterior CSIT is equally useful as the prior
CSIT for average SNRs Γ = 10 and higher. Furthermore, as
water filling is more significant at low SNRs, we can see that
with R = log2(1+3Γ) and full CSIT, BRQ tightly approaches
the average rate obtainable by water filling for Γ equal to 20
dB or higher. The scheme with quantized CSIT converges to a
fixed value as Γ increases (proof omitted due to lack of space).

The behavior of the average rate for the quantized scheme
is better visible from (5), where the average SNR is fixed to
Γ, while R = log2(1 + γR) increases. The abscissa shows the
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scalar ratio γR
Γ , while the ordinate shows the absolute value of

the average rate in bits per channel use [bit/c.u.]. We see that
the schemes F = 1, F = 2 still grow in the region in which
the scheme with F = 8 is saturated. The reason is that the
schemes with low F are additionally affected by the decrease
of H(pR) as pR grows, which affects the value of d, while
H(pR) has a negligible effect for F = 8.

VI. DISCUSSION AND CONCLUSIONS

The main objective of this paper is to introduce a class of
new transmission schemes based on backtrack retransmission
(BRQ) that are useful when the CSIT can only be available
after the transmission has taken place. Compared to the exist-
ing works on the topic, BRQ offers an elegant way to use the
full posterior CSIT, based on adaptive Markov block coding,
thereby closely approaching the average throughput achievable
with prior CSIT. By extending the ideas of BRQ to the case

where only a finite number of feedback bits are available,
we have introduced a way to use the feedback bits which
significantly departs from the standard way in which these bits
are used in HARQ protocols. We devise a scheme in which
it is possible to assemble multiple feedback bits and jointly
report multiple CSIT values through vector quantization.

In this initial work on the topic we have used the asymp-
totic information-theoretic results, valid when the number of
channel uses per slot N and when the number of slots in a
block L (used in vector quantization) goes to infinity. When
finite values of N and L are considered, then the protocol
should be adjusted in order to account for nonzero probability
of error in the transmission as well as in the recovery based on
the random binning. This analysis will be put in an extended
version of this paper. Another interesting aspect is the choice
of the distortion criterion. We have chosen d to be constant,
but in general d should depends on the SNR value and the
optimal d should maximize the average rate.

An interesting extension would be to generalize BRQ to
multi-user scenarios. On the other hand, considering the
practicality of the assumption about the posterior CSIT, the
presented method is relevant for the practical wireless systems,
such as LTE, based on fixed-size physical resources and signif-
icantly affected by intermittent interference from neighboring
cells. It is therefore important to explore how BRQ can be
implemented with practical coding/modulation schemes.
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