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o o (i) prior knowledge of spatial long-term correlation of the
~ Abstract—We present a statistical approach for estimating the interference links (due to correlated slow fading channpels
interference coupling coefficients in an LTE network based o a and (ii) statistical knowledge of measurement uncertaifitys

set of various measurements available at the network and ter - -
minal level. The proposed approach combines the measuremn stands in clear contrast to [8] where no statistical knogéed

with prior information (spatial correlation among interfe rence a@bout the underlying interference process is exploitedjmga
links) and takes into account measurement uncertainty. The the scheme more suitable and robust to scenarios in whigh thi

result is a simple closed-form estimator that allows for fasreal-  knowledge is not available and cannot be reliably learned.
time interference estimation. ; ;
Index Terms—Cellular networks, LTE, inter-cell interference, ;rhih atpproach 8f_[8]th!s therefor_e no:hdlrle(t:ttly comparable
spatial correlation, MMSE, least squares. o .fi PVOP‘?SE in is paper_ since the la .er pr(.asu.mes an
additional prior knowledge, while the former is a distribdt
. INTRODUCTION online learning scheme that continuously learn the interfee

Long Term Evolution Advanced (LTE-A) heterogeneouSt'UCtUré as new measurements arrive. , _
networks (HetNets) offer improved coverage, capacity, andGVen some physical-layer measurements available in the
spectral efficiency compared with traditional LTE system&E downlink and uplink, in Section 1l of this paper, we
thanks to a dense deployment of novel network elements sii§{1ve @ linear model corrupted by measurement uncertainty
as picolfemto base stations (BS) and relay nodes. HowevEpe model relates the measurements to the so-called channel
such dense and often unplanned deployment with full &N matrix, which in turn can be used to reconstruct the
quency reuse (reuse factor 1) may lead to critical inter-c§PUINt interference matrix. As shown in Section I, this
interference problems. Estimating the interference letghe MOdel can be used to obtain optimal linear Minimum
network links becomes therefore a crucial task. In paricul M&an Square Error (MMSE) estimator, provided that the
knowledge of the long-term interference structure in forrior distribution of the interference matrix as well as the
of the interference matrix may be beneficially exploited byncertainty distribution are both Gaussian (in linear eral
the network to implement self-adaptation mechanisms, or ®ce slow fading caused by shadowing is often assumed
enable direct device-to-device (D2D) communication mod@ Nave & log-normal distribution, we adopt in Section
when necessary (see for instance the discussuion in [1] dd@ more realistic model in which the prior interference
references therein). distribution is log-normal (typical model for shadowing)

Several inter-cell interference management schemes h4id the uncertainty distribution is Gaussian in dB scale
been proposed in LTE-A under the name of “enhanced intdpiccounting for quantization errors an.d offsets in the regub
cell interference coordination (eICIC)" [2][4]. An infier- values). Unfortgnately, when written in dB scale, the model
ence management approach based on ‘“cognitive BSs” Pgcomes non-linear. Therefore, we propose a closed-form

suggested in [5]. Other works more closely related to thie tadinéarized” MMSE estimator that is based on the first
of estimation of the interference matrix are: [6], dealinghw Crder approximation of the non-linear model. The proposed

estimation of the spatial covariance matrix; [7], using atool 2PProaches are evaluated in Section V, while complexity

theory-based approach: and [8], where available measmtsméSSUES are d_lscussed in Section VI. Conclusion is drawn in
at the network as well as user equipment (UE) level af@e last section.
incorporated with physical bounds as a set-theoretic esiom
approach. Il. PROBLEM FORMULATION
In this paper, we consider the same available measurements _
as in [8], but we propose a statistical estimation approach.Clven & cellular network withKy users andKg base

i Kyx K, Kyx K,
By doing so, we are able to combine the measurements tions, we useA € {0,1}"v*** and H € R*™*% to
denote the assignment matrix and the channel (power) gain

Part of this work has been performed in the framework of thg pject Mmatrix, respectively. While the assignment matrix dessib
ICT-317669 METIS, which is partly funded by the European d&niThe the gssignment of the users to the base stations, the channel
authors would like to acknowledge the contributions of thmlleagues in . Lo .

METIS, although the views expressed are those of the autmadsdo not 9ain m_atr'x 'nC|_UdeS 3“ power atten_uat'on effects for each
necessarily represent the project. transmitter-receiver pair. Therefore, givdnand some power



allocation vector, the matriA”TH determines the interference « ULl measurements:

power at all receivers. SincA is usually known in the net- Ky
work, the interference matrix can be easily computed whenev P Zng[H]“vb(l —[Alup), be{l,...,Ks},
H is known so that our goal in this paper is to estimkie u=1
or, equivalentlyh = vec(H) € RX where K & KgK\. We oL _ _ (6)
assume a prior distribution df is available, withh £ E[h] where p,,- is the uplink transmit power of user (as-
and Cy, £ E[(h — h)(h — h)”]. The prior mearh may be sumed as known at B§).
given by the path loss (assuming known positions of UEs and® DLI measurements:
BSs and known path loss exponent). A general model for the K
covarianceCy, may be expressed as follows. We first note that ~ ¢n- = ZPEL[H]u,b(l —[Alup), ue{l,..., Ky},
the relation between indexes ® andh = [h4,...,hk] can b=1 )
be written as DL . .

where py- is the downlink transmit power of BS

Hlup = hicy(b—1)4us (1) (assumed as known at usey.

All these measurements, in practice, are affected by statis

therefore the user and BS corresponding to theth position uncertainties, as discussed in the following sections.

of vectorh can be retrieved by two simple functions,

b(i) £ [i/Kul, v [II. MMSE ESTIMATOR WITH LINEAR MODEL
A

u(i) =i — Ky(b(i) — 1). (38)  We first introduce a Gaussian linear model for the mea-
o ) . surement uncertainties and for the prior probability dinsi
Hence, any(i, j)-th element of the covariance matrix can b@nction (p.d.f.) ofh. This model simplifies the mathematical

expressed as analysis. Under this model, the vector 8f RSRP measure-
(i N ments can be written as
[Chlij = pe~ dB@Du(@}{b().u(@)}) (4)
r = Diag(p)h 4 n"RP (8)

wherep is a positive constant and(-, -) is a properly chosen A o ) _
distance function between two BS-UE communication link&/Ne€r€ p = [p1...., px] 'S the referzence signal transmit
It may be assumed that only nodes served by the same BSRWer Vector andigsgp € R™ ~ N'(0, osgpl) is @ vector of
correlated, in which casé({b,u}, {V/,u'}) = oo if b # . Gaussian distributed, uncorrelated measurement uncéesai

For a more concrete example of the correlation model, s¥f¢ assume here that the channel entries have a joint Gaussian
" “distribution in linear scale, such thht~ A'(h, Cy).

Section V. -

A complete list of the physical-layer measurements avail- For ULI measurements, we rewrite (6) as
able in the LTE L_Jplmk and downlmk is reported in [9]. b= (@ opH)T. [h]%zu(bq)ﬂ 9)
Among these, particularly relevant for interference eation _ UL T
are thereference signal received power (RSRP) [9, Section =[e@@op™)] h, (10)
5.1.1], measured by the UE in the downlink, and tiphink | hare pUt 2 [pUt 7pg(IIJ]T, a@, is the b-th column of

interference (ULI) power [9, Section 5.2.2]. In the following, A
it is assumed that the thermal noise power (also reporteddgn

the uplink, see [S_), Section 5.2.3]) is subtracted from Ulfhme [V]j denotes a sub-vector of from index through j, and
surements. Similarly, UEs are able to measure dbenlink ey € {0, 1}5% is a vector of all zero elements except a one in

|knterfere|:]ce (Dll‘l) POWer, by s:btrac::n_g QSSTSRP and thﬁjosition b. From (10), and introducing an uncertainty vector
nown thermal noise power from their measurementsu o pKs N(0,02,,I), we can write the vector ofg

[9, Section 5.1.3]. _ ULI measurements as

It is then assumed that the channel powersracgrocal, oL .
ie., H is the same in the UL and in the BLWithout ¢° = [e1 ® (a1 ©p"h),... ek, ® (ak, ©p"")]" - h+n""
measurement uncertainty and in linear scale, the measnteme (11)

can be written as follows. = [Ix, * (Diag(pUL) ~K)}T “h 4 nYt (12)
B Y
« RSRP measurements:

i.e. the 1-complement of the assignment mattx ©
otes element-wise product,denotes Kronecker product,

whereIx, is the identity matrix and« denotes Khatri-Rao

ri = pihi, 1€ {l,...,K}, (5) proqlugF [10]. . |
Similarly, for the downlink, we obtain

where p; is the reference signal transmit power of BS

b(i). ¢DL = [(Diag(pDL) KT) % IKU]T -h+ nDLI, (13)

2The Khatri-Rao product is defined as the column-wise Kroeegkoduct
INote the assumption of channel reciprocity only involves gower, but between two matrices: giveX = [xi1,...,X,] € R™*" and Y =
not the phase. [¥1,.--,yn] ERPX™ thenX xY £ [X1 ®y1,...,%Xn @ yn] € RMPXN



where pPt £ [pPt. . pRE]T and nPY € RFv ~  and the MMSE itself is difficult to compute explicitly. For

N(0,02, ). example, in the uplink case (6), we have for {1,..., Kg},
DLI . . P
By using the above results, all the available observations K
can be combined into a simple linear model, Q;JL — 101log <Z(1 B [A]M)looq(pzw[H]u,h)> . (19)
r Diag(p) nRSRP v
. ——\17T ; ;
oVt | = [k, * (Diag(p'") - A)] h+ | oW | In order to tackle this problem, we propose the following
#°" [(Diag(p°) .KT) o1 }T noL! approach: we linearize the measurement model by a first-
s\P Ku order Taylor expansion centered in the prior mdanin
Ly Ay £n this way, we obtain a linear combination of the Gaussian

. (14) variablesh andn, and we can perform LMMSE estimation
with y, n € RETKuTKe and W e REHKuTKR)XE Note  of h. We name the proposed approdatearized log-MMSE

thatn ~ N(0,D) with (LLMMSE) estimator. Note that no linearization is necessary
o T for RSRP measurements (18), to which LMMSE estimation
D £ Diag([oRsrp L, 00u1 1k, 0BTk, ] )- (15)  can be applied directly.

At this point we can derive the MMSE estimator. Thanks to The linearized ULI measurement vector is

the Gaussian distribution di andn, we have the following PVt ~ ¢UL( )+ J¢UL( ) (b—h)+n"", (20)

property: The optimal MMSE estimator is equivalent to the - o

linear MMSE (LMMSE). Thus, where quL(E) is the vector of logarithmic ULI measure-
JuL uL . o

RMMSE _ {LMMSE _ 4 o WT(WC, WT+D) ! (y— WH). ments¢- = [¢> ,...,<z> ] , given element-wise by (19),

(16) computed inh = h; J¢UL(_) € REexK js the matrix of

This estimator exploits the prior knowledge of the statistf partial derivatives (Jac_abian matrix) @’ with respect to
h and ofn. An alternative estimator is the simple least squarés computed inh = h; and ny,, ~ N(0,08,I) is the

(LS) estimator, which is given by measurement uncertainty, normally distributed in dB scale
A LS P T The symbol~ represents a first-order approximaftion
h™ = (W'W)""W'y 17 We next derive a closed form of the Jacobian matrix. By
and can be viewed as a maximum likelihood (ML) estimatéjrefm't'on'
without any prior information orh andn. gV gV
Db R
Jgu)= [ 0 o (21)
IV. MMSE ESTIMATOR WITH LOGARITHMIC MODEL - a0V ag%
P 4
A more realistic model is given by assuming that all the Oh, "1t Ohy

variables are in dB scale, so thhthas a log-normal joint As a consequence of the ULl measurement structure (19) and
distribution (which reflects log-normal shadow fading) @he of the indexing logic (1), two properties immediately folio

measurement uncertainty is also Gaussian in dB scale (which UL UL
. o . . ¢ ¢
accounts for rounding or quantization errors, bit errorshie Lo Zb —0 Vu,Vb £b (22)
reported data, scale offsets, etc.). In the following,aklgs in ~ O[HJuy Ol —1)4u ’ ’
dB are distinguished from the corresponding variablesiedr depVt Y
scale by an underline sign: e.dh; = 10log(h;), [Hjup = => =b =0 Vu,b:[A]l,p,=1. (23)

10log([H],.5), etc. The symbdbg denotes base-10 logarithm. OMJup Ol p-1)tu
Under this new model, we assume the prior distributionihe other elements of the matrix are given by
of the interference vector to be Gaussian in dB schley

N(h, Cy). The log-covarianceC, = E[(h — h)(h — h)7], aQIL)JL _ a?;)JL (24)
representing spatial correlation, can be expressed byatine s O lup Ol b-1)tu
distance-based model (4) used in the linear case (with the (1—[Al, )1001 P H[H]w )
difference that it now applies to values hfin dB). = I ) (25)
The vector of noisy RSRP measurements becomes Z 1 (1= [Alw, b> 07w "
( [A]u b) [ ]u b
_ RSRP = : 26
E*EJFh*FQ ) (18) Z ( [A] [ ]u’,b (26)
wherengsgp ~ N (0, 0sgpl) is the measurement uncertainty, (1= [Alu)pdtH ] 27)

now Gaussian distributed in dB scale. While RSRP measure-
ments are still linear under the logarithmic model, ULl and
DL! measu_rements become non'“near' Therefore, the Ij'v||v|S|-:3The error introduced by this approximationdgh — h). The leading error
estimator is no longer equivalent to the MMSE estimatogrm can be quantified by a quadratic form involving the Hessnatrix.

ey ® (@@ p')]” -h



Therefore, by algebraic manipulations similar to (10))(12e 0 ge—®

can express the Jacobian matrix as ol ‘OA..‘ - : gg ]
Jyu(h) = (Z) 7' [T, * (Diag( UL)-K)]T-Dia (h) (28) T oo’ *
pur(h) = Kg g\p g ;e ° Ae o ° A
4 » °
where o ® Lo ‘. A o
UL 2 1 . uy o7 5¢ b ° A
Z°" £ Diag{ [Ix, * (Diag(p"")- A)]" - h}. (29) N |
°
As a remark, we note that the Jacobian matrix in the logarith- 3t ® ° ° A
mic model has been conveniently expressed using variatles i ® O A & e ° A
the linear model. Thus] ,u (h) is simply given by replacing , o
-a . 9 L\ 1 A [ ) L P
h with b in (28) and (29). ol e o

Similarly, for the downlink, we can write

¢P ~ ¢P () + J 4o () - (h — ) +n°" (30) Fig. 1. Simulation scenario. 15 BSs and 50 users are randdistibuted
- in an area of square with a length of 10 km.
with np,, ~ N(0,03,,I). The Jacobian turns out to be

_ . T T . Parameter Value
Jgou(h) = (Z°H) 7" - [(Diag(p®") - A") * I, ] - Diag(h), Ry =
(31) K 2
where a 1/400 km—2
DL A ) — T B 1/300 km—2
7Z°- = Dlag{ [(Dlag(p ) A ) * IKU] . h}. (32) pUt uniformly distributed in[20, 23]dB
. i pPr uniformly distributed in[43, 46]dB
Then, after rearranging some terms in (20) and (30), the p uniformly distributed in[49, 51]dB
global observation model can be written as p simulation variable
O2erp simulation variable
r—p o IK_ nRoRP T, 1.50cp
¢" — " (h) +Jyu(h) h| ~ [Jyu(D)| ht | 0V |, oh, 20%emp
DL LDL, S = | DL Path loss exponent
¢ —¢ (h)+Jgo(h)-h Jgou(h) n h € [~126, —76]dB
a aw Ln TABLE |
- T (33) SIMULATION PARAMETERS.

wheren ~ N (0, D) with

D= Diag([U%SRPljl;v UL2JL|11T(B7 UIQDLI]-%U}T)' (34) .
Here and hereaftery, § are positive constantg,- || denotes
Euclidean norm, ana;), X,(;) are the positions of théth
hLLMMSE B+ CuWT (WC,WT + D)~ (y - Wh). (35) BS and uset, respectively. Note t_hat the Kronecker correlation
= = = model can be seen as a special case of the general model
Similarly, alinearized log-LS(LLLS) estimator can be obtained(4), with d({b(i), u(i)}, {b(j), u(4)}) = |xp) — X l|* +
as follows, Bllxu() — Xu||?. Furthermore,p is a simulation variable
ELLLS = W'w)"'wTy. (36) for evaluating the performance of our algorithm with diéiet
o channel statistics. In addition the RSRP uncertaiatyis
used as a simulation variable to show the performance under
different noise levels.

V. NUMERICAL RESULTS In the simulation, 15 BSs and 50 users are randomly
1gistributed in a square area with a length of 10 km. Users are

Therefore, the LLMMSE estimator is given by

For numerical evaluation, we adopt a simple but widely ™" X ) !
b P ssigned to the closest BS, while the other BSs are intadgeri

used correlation model known as the Kronecker model [1 “des in the d link and interfered by the oth i th
According to this model, the channel correlation matrixie t "09€S N th€ downlink and interfered by the other users in the
plink. An example of the simulation topology is depicted in

Kronecker product of the antenna correlation matrices at tﬁlg 1. where the path loss ranges betwee26 dB and-— 76

transmit and receive side: dB. The other values used in the simulation are listed indabl
Cn = pRg ® Ry, .

Numerical results are shown in Fig. 2 and 3, respectively,
for the linear and the logarithmic model. We compare the
MSE obtained by the (LL)MMSE and (LL)LS estimators as
and a function of the RSRP uncertainty varianegszp and of

[Ruli,; = exp(—Blxuiy — Xui 1) - the channel variance. Note that, in the logarithmic model,

where
[Reli,; £ exp(—al[xys) — xp(5)|1*)
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Fig. 2. MMSE and LS performance with the linear model (i.ethbthe
channel gain vector and the vector of measurement uncieta@re normally
distributed): (a) vso@sgp, With p = 0.2; (b) vs. p, with o2¢ep = 3 - 10%.

100
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RSRP uncertainty variance

@

10° 10°

—— LLMMSH
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RSRP uncertainty variance Average channel variange
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Fig. 3. MMSE and LS performance with the logarithmic model both the
channel gain vector and the vector of measurement uncéetihave log-
normal distributions): (a) vsrgsgp, With p = 1.5-10~* dB; (b) vs.p, with
0Begp = 1.3-107° dB.

matrix. A cubic complexity in the number of measurements
may be affordable if interference estimation is performed i
centralized way. In future research, more efficient disted
methods will be investigated for a possible decentralized
implementation.

VIlI. CONCLUSIONS

We have proposed two MMSE estimators for interference
identification in LTE networks, assuming first an idealized
linear Gaussian model and then a more realistic log-normal
model. Both estimators are expressed in closed form. The
second estimator achieves good performance provided that
the channel fluctuations are not too far from the prior mean.
Thanks to the logarithmic formulation, it is robust against
numerical problems (overflow/underflow) and is suitable for
practical implementation. Compared to iterative appreach
e.g. [8], the proposed solution enables real-time estonatif
the interference coefficients and exploits the availabierpr
information, namely spatial channel correlation and measu
ment uncertainty statistics.

The proposed approach can be extended to the case of se-
guential estimation (an extended Kalman filter can be ddrive
using the same linearization as in Section V). Distributed
implementation may be investigated as well, exploiting the
problem sparsity (every measurement only depends on atsubse
of elements oth).

such variances apply to values in dB. The results show that
in both cases the MMSE estimators behave according to the
theory and outperform LS estimators. The gap vanishes f%
low noise uncertainty (Fig. 2 (a) and Fig. 3 (a)) because
with sufficiently small diagonal elements &, the solution

of (LL)MMSE converges to the solution of (LL)LS. The 3]
same conclusion can be drawn for the case with high channel
variance (Fig. 2 (b) and Fig. 3 (b)): i€y, is very large, we [4]
can neglecD so that (LL)MMSE and (LL)LS yield the same
solution. Figure 3 shows the performance is still consistens)
when linearization is applied, except for very high channel
variance where the approximation by the first-order Taylo[6

expansion in (20) becomes inaccurate. ]

VI. NUMERICAL COMPLEXITY (7]

From the numerical point of view, we remark that the linear
system (under both models) is well conditioned as long as ti}g]
number of available measurementsigk, so that matrixXW
(or W) is “tall”. Since the number of RSRP measurements is
K, such requirement is always satisfied if RSRP measurements
are available for all BS-UE pairs. [10]

The numerical complexity is dominated by the inversion of
a matrix of size(K + Kg + Ky) x (K + Kg + Ky), which 1]
has complexityO((K + Kg + Ky)*). Note that in practice
decomposition methods (e.g. QR factorization) are used for
the solutions of linear systems without explicitly invedithe
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