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Abstract—We present a statistical approach for estimating the
interference coupling coefficients in an LTE network based on a
set of various measurements available at the network and ter-
minal level. The proposed approach combines the measurements
with prior information (spatial correlation among interfe rence
links) and takes into account measurement uncertainty. The
result is a simple closed-form estimator that allows for fast real-
time interference estimation.

Index Terms—Cellular networks, LTE, inter-cell interference,
spatial correlation, MMSE, least squares.

I. I NTRODUCTION

Long Term Evolution Advanced (LTE-A) heterogeneous
networks (HetNets) offer improved coverage, capacity, and
spectral efficiency compared with traditional LTE systems,
thanks to a dense deployment of novel network elements such
as pico/femto base stations (BS) and relay nodes. However,
such dense and often unplanned deployment with full fre-
quency reuse (reuse factor 1) may lead to critical inter-cell
interference problems. Estimating the interference levelof the
network links becomes therefore a crucial task. In particular,
knowledge of the long-term interference structure in form
of the interference matrix may be beneficially exploited by
the network to implement self-adaptation mechanisms, or to
enable direct device-to-device (D2D) communication mode
when necessary (see for instance the discussuion in [1] and
references therein).

Several inter-cell interference management schemes have
been proposed in LTE-A under the name of “enhanced inter-
cell interference coordination (eICIC)” [2]–[4]. An interfer-
ence management approach based on “cognitive BSs” is
suggested in [5]. Other works more closely related to the task
of estimation of the interference matrix are: [6], dealing with
estimation of the spatial covariance matrix; [7], using a control
theory-based approach; and [8], where available measurements
at the network as well as user equipment (UE) level are
incorporated with physical bounds as a set-theoretic estimation
approach.

In this paper, we consider the same available measurements
as in [8], but we propose a statistical estimation approach.
By doing so, we are able to combine the measurements with
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(i) prior knowledge of spatial long-term correlation of the
interference links (due to correlated slow fading channels),
and (ii) statistical knowledge of measurement uncertainty. This
stands in clear contrast to [8] where no statistical knowledge
about the underlying interference process is exploited, making
the scheme more suitable and robust to scenarios in which this
knowledge is not available and cannot be reliably learned.
The approach of [8] is therefore not directly comparable
to that proposed in this paper since the latter presumes an
additional prior knowledge, while the former is a distributed
online learning scheme that continuously learn the interference
structure as new measurements arrive.

Given some physical-layer measurements available in the
LTE downlink and uplink, in Section III of this paper, we
derive a linear model corrupted by measurement uncertainty.
The model relates the measurements to the so-called channel
gain matrix, which in turn can be used to reconstruct the
sought interference matrix. As shown in Section III, this
model can be used to obtain optimal linear Minimum
Mean Square Error (MMSE) estimator, provided that the
prior distribution of the interference matrix as well as the
uncertainty distribution are both Gaussian (in linear scale).
Since slow fading caused by shadowing is often assumed
to have a log-normal distribution, we adopt in Section
IV a more realistic model in which the prior interference
distribution is log-normal (typical model for shadowing)
and the uncertainty distribution is Gaussian in dB scale
(accounting for quantization errors and offsets in the reported
values). Unfortunately, when written in dB scale, the model
becomes non-linear. Therefore, we propose a closed-form
“linearized” MMSE estimator that is based on the first
order approximation of the non-linear model. The proposed
approaches are evaluated in Section V, while complexity
issues are discussed in Section VI. Conclusion is drawn in
the last section.

II. PROBLEM FORMULATION

Given a cellular network withKU users andKB base
stations, we useA ∈ {0, 1}KU×KB and H ∈ R

KU×KB to
denote the assignment matrix and the channel (power) gain
matrix, respectively. While the assignment matrix describes
the assignment of the users to the base stations, the channel
gain matrix includes all power attenuation effects for each
transmitter-receiver pair. Therefore, givenA and some power



allocation vector, the matrixATH determines the interference
power at all receivers. SinceA is usually known in the net-
work, the interference matrix can be easily computed whenever
H is known so that our goal in this paper is to estimateH

or, equivalently,h , vec(H) ∈ R
K whereK , KBKU. We

assume a prior distribution ofh is available, withh , E[h]
andCh , E[(h − h)(h − h)T ]. The prior meanh may be
given by the path loss (assuming known positions of UEs and
BSs and known path loss exponent). A general model for the
covarianceCh may be expressed as follows. We first note that
the relation between indexes ofH andh = [h1, . . . , hK ] can
be written as

[H]u,b = hKU(b−1)+u, (1)

therefore the useru and BSb corresponding to thei-th position
of vectorh can be retrieved by two simple functions,

b(i) , ⌈i/KU⌉, (2)

u(i) , i−KU(b(i)− 1). (3)

Hence, any(i, j)-th element of the covariance matrix can be
expressed as

[Ch]i,j = ρe−d({b(i),u(i)},{b(j),u(j)}), (4)

whereρ is a positive constant andd(·, ·) is a properly chosen
distance function between two BS-UE communication links.
It may be assumed that only nodes served by the same BS are
correlated, in which cased({b, u}, {b′, u′}) = ∞ if b 6= b′.
For a more concrete example of the correlation model, see
Section V.

A complete list of the physical-layer measurements avail-
able in the LTE uplink and downlink is reported in [9].
Among these, particularly relevant for interference estimation
are thereference signal received power (RSRP) [9, Section
5.1.1], measured by the UE in the downlink, and theuplink
interference (ULI) power [9, Section 5.2.2]. In the following,
it is assumed that the thermal noise power (also reported in
the uplink, see [9, Section 5.2.3]) is subtracted from ULI mea-
surements. Similarly, UEs are able to measure thedownlink
interference (DLI) power, by subtracting the RSRP and the
known thermal noise power from their RSSI measurements
[9, Section 5.1.3].

It is then assumed that the channel powers arereciprocal,
i.e., H is the same in the UL and in the DL1. Without
measurement uncertainty and in linear scale, the measurements
can be written as follows.

• RSRP measurements:

ri = pihi, i ∈ {1, . . . ,K}, (5)

where pi is the reference signal transmit power of BS
b(i).

1Note the assumption of channel reciprocity only involves the power, but
not the phase.

• ULI measurements:

φUL

b =

KU∑

u=1

pULu [H]u,b(1− [A]u,b), b ∈ {1, . . . ,KB},

(6)
where pULu is the uplink transmit power of useru (as-
sumed as known at BSb).

• DLI measurements:

φDL

u =

KB∑

b=1

pDL

b [H]u,b(1− [A]u,b), u ∈ {1, . . . ,KU},

(7)
where pDL

b is the downlink transmit power of BSb
(assumed as known at useru).

All these measurements, in practice, are affected by statistical
uncertainties, as discussed in the following sections.

III. MMSE ESTIMATOR WITH LINEAR MODEL

We first introduce a Gaussian linear model for the mea-
surement uncertainties and for the prior probability density
function (p.d.f.) ofh. This model simplifies the mathematical
analysis. Under this model, the vector ofK RSRP measure-
ments can be written as

r = Diag(p)h+ nRSRP (8)

where p , [p1, . . . , pK ]T is the reference signal transmit
power vector andnRSRP ∈ R

K ∼ N (0, σ2
RSRP

I) is a vector of
Gaussian distributed, uncorrelated measurement uncertainties.
We assume here that the channel entries have a joint Gaussian
distribution in linear scale, such thath ∼ N (h,Ch).

For ULI measurements, we rewrite (6) as

φUL

b = (ab ⊙ pUL)T · [h]bKU

KU(b−1)+1 (9)

=
[
eb ⊗ (ab ⊙ pUL)

]T
· h , (10)

where pUL , [pUL1 , . . . , pULKU
]T , ab is the b-th column of

A, i.e. the 1-complement of the assignment matrixA, ⊙
denotes element-wise product,⊗ denotes Kronecker product,
[v]ji denotes a sub-vector ofv from index i throughj, and
eb ∈ {0, 1}KB is a vector of all zero elements except a one in
position b. From (10), and introducing an uncertainty vector
nULI ∈ R

KB ∼ N (0, σ2
ULI

I), we can write the vector ofKB

ULI measurements as

φUL =
[
e1 ⊗ (a1 ⊙ pUL), . . . , eKB

⊗ (aKB
⊙ pUL)

]T
· h+ nULI

(11)

=
[
IKB

∗
(
Diag(pUL) ·A

)]T
· h+ nULI , (12)

where IKB
is the identity matrix and∗ denotes Khatri-Rao

product2 [10].
Similarly, for the downlink, we obtain

φDL =
[(
Diag(pDL) ·A

T )
∗ IKU

]T
· h+ nDLI, (13)

2The Khatri-Rao product is defined as the column-wise Kronecker product
between two matrices: givenX = [x1, . . . ,xn] ∈ R

m×n and Y =
[y1, . . . ,yn] ∈ R

p×n, thenX ∗Y , [x1 ⊗ y1, . . . ,xn ⊗ yn] ∈ R
mp×n



where pDL , [pDL
1 , . . . , pDL

KB
]T and nDLI ∈ R

KU ∼
N (0, σ2

DLI
I).

By using the above results, all the available observations
can be combined into a simple linear model,
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(14)
with y, n ∈ R

K+KU+KB and W ∈ R
(K+KU+KB)×K . Note

thatn ∼ N (0,D) with

D , Diag
([
σ2
RSRP1

T
K , σ2

ULI1
T
KB

, σ2
DLI1

T
KU

]T )
. (15)

At this point we can derive the MMSE estimator. Thanks to
the Gaussian distribution ofh andn, we have the following
property: The optimal MMSE estimator is equivalent to the
linear MMSE (LMMSE). Thus,

ĥMMSE = ĥLMMSE = h+ChW
T (WChW

T+D)−1(y−Wh).
(16)

This estimator exploits the prior knowledge of the statistics of
h and ofn. An alternative estimator is the simple least squares
(LS) estimator, which is given by

ĥLS = (WTW)−1WTy (17)

and can be viewed as a maximum likelihood (ML) estimator
without any prior information onh andn.

IV. MMSE ESTIMATOR WITH LOGARITHMIC MODEL

A more realistic model is given by assuming that all the
variables are in dB scale, so thath has a log-normal joint
distribution (which reflects log-normal shadow fading) andthe
measurement uncertainty is also Gaussian in dB scale (which
accounts for rounding or quantization errors, bit errors inthe
reported data, scale offsets, etc.). In the following, variables in
dB are distinguished from the corresponding variables in linear
scale by an underline sign: e.g.,hi , 10 log(hi), [H]u,b ,

10 log([H]u,b), etc. The symbollog denotes base-10 logarithm.
Under this new model, we assume the prior distribution

of the interference vector to be Gaussian in dB scale:h ∼
N (h,Ch). The log-covarianceCh , E[(h − h)(h − h)T ],
representing spatial correlation, can be expressed by the same
distance-based model (4) used in the linear case (with the
difference that it now applies to values ofh in dB).

The vector of noisy RSRP measurements becomes

r = p+ h+ nRSRP , (18)

wherenRSRP ∼ N (0, σ2
RSRP

I) is the measurement uncertainty,
now Gaussian distributed in dB scale. While RSRP measure-
ments are still linear under the logarithmic model, ULI and
DLI measurements become non-linear. Therefore, the LMMSE
estimator is no longer equivalent to the MMSE estimator,

and the MMSE itself is difficult to compute explicitly. For
example, in the uplink case (6), we have forb ∈ {1, . . . ,KB},

φUL

b
= 10 log

(
KU∑

u=1

(1− [A]u,b)10
0.1(pUL

u
+[H]u,b)

)

. (19)

In order to tackle this problem, we propose the following
approach: we linearize the measurement model by a first-
order Taylor expansion centered in the prior meanh; in
this way, we obtain a linear combination of the Gaussian
variablesh andn, and we can perform LMMSE estimation
of h. We name the proposed approachlinearized log-MMSE
(LLMMSE) estimator. Note that no linearization is necessary
for RSRP measurements (18), to which LMMSE estimation
can be applied directly.

The linearized ULI measurement vector is

φUL ≈ φUL(h) + JφUL(h) · (h− h) + nULI , (20)

where φUL(h) is the vector of logarithmic ULI measure-
mentsφUL = [φUL

1
, . . . , φUL

KB

]T , given element-wise by (19),

computed inh = h; JφUL(h) ∈ R
KB×K is the matrix of

partial derivatives (Jacobian matrix) ofφUL with respect to
h, computed inh = h; and nULI ∼ N (0, σ2

ULI
I) is the

measurement uncertainty, normally distributed in dB scale.
The symbol≈ represents a first-order approximation3.

We next derive a closed form of the Jacobian matrix. By
definition,

JφUL(h) ,
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1

. . .
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. (21)

As a consequence of the ULI measurement structure (19) and
of the indexing logic (1), two properties immediately follow:

∂φUL

b

∂[H]u,b′
=

∂φUL

b

∂hKU(b′−1)+u

= 0 ∀u, ∀b′ 6= b, (22)

∂φUL

b

∂[H]u,b
=

∂φUL

b

∂hKU(b−1)+u

= 0 ∀u, b : [A]u,b = 1. (23)

The other elements of the matrix are given by

∂φUL

b

∂[H]u,b
=

∂φUL

b

∂hKU(b−1)+u

(24)

=
(1 − [A]u,b)10

0.1(pUL

u
+[H]u,b)

∑KU

u′=1(1− [A]u′,b)10
0.1(pUL

u′
+[H]u′,b)

(25)

=
(1− [A]u,b)p

UL
u [H]u,b

∑KU

u′=1(1− [A]u′,b)pULu′ [H]u′,b

(26)

=
(1− [A]u,b)p

UL
u [H]u,b

[
eb ⊗ (ab ⊙ pUL)

]T
· h

. (27)

3The error introduced by this approximation iso(h−h). The leading error
term can be quantified by a quadratic form involving the Hessian matrix.



Therefore, by algebraic manipulations similar to (10)-(12), we
can express the Jacobian matrix as

JφUL(h) = (ZUL)−1 ·
[
IKB

∗
(
Diag(pUL)·A

)]T
·Diag(h) (28)

where

ZUL , Diag
{[
IKB

∗
(
Diag(pUL) ·A

)]T
· h
}
. (29)

As a remark, we note that the Jacobian matrix in the logarith-
mic model has been conveniently expressed using variables in
the linear model. Thus,JφUL(h) is simply given by replacing

h with h in (28) and (29).
Similarly, for the downlink, we can write

φDL ≈ φDL(h) + JφDL(h) · (h− h) + nDLI (30)

with nDLI ∼ N (0, σ2
DLI

I). The Jacobian turns out to be

JφDL(h) = (ZDL)−1 ·
[(
Diag(pDL) ·A

T )
∗ IKU

]T
·Diag(h),

(31)
where

ZDL , Diag
{[(

Diag(pDL) ·A
T )

∗ IKU

]T
· h
}
. (32)

Then, after rearranging some terms in (20) and (30), the
global observation model can be written as
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(33)
wheren ∼ N (0,D) with

D , Diag
([
σ2
RSRP1

T
K , σ2

ULI1
T
KB

, σ2
DLI1

T
KU

]T )
. (34)

Therefore, the LLMMSE estimator is given by

ĥ
LLMMSE

= h+ChW
T (WChW

T +D)−1(y−Wh). (35)

Similarly, alinearized log-LS (LLLS) estimator can be obtained
as follows,

ĥ
LLLS

= (WTW)−1WTy. (36)

V. NUMERICAL RESULTS

For numerical evaluation, we adopt a simple but widely
used correlation model known as the Kronecker model [11].
According to this model, the channel correlation matrix is the
Kronecker product of the antenna correlation matrices at the
transmit and receive side:

Ch = ρRB ⊗RU ,

where
[RB]i,j , exp(−α‖xb(i) − xb(j)‖

2)

and
[RU]i,j , exp(−β‖xu(i) − xu(j)‖

2) .
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Fig. 1. Simulation scenario. 15 BSs and 50 users are randomlydistributed
in an area of square with a length of 10 km.

Parameter Value
KU 4
KB 2
α 1/400 km−2

β 1/300 km−2

pUL uniformly distributed in[20, 23]dB
pDL uniformly distributed in[43, 46]dB
p uniformly distributed in[49, 51]dB
ρ simulation variable

σ2

RSRP
simulation variable

σ2

ULI
1.5σ2

RSRP

σ2

DLI
2σ2

RSRP

Path loss exponent 2.5

h ∈ [−126,−76]dB

TABLE I
SIMULATION PARAMETERS.

Here and hereafter,α, β are positive constants,‖ · ‖ denotes
Euclidean norm, andxb(i), xu(i) are the positions of thei-th
BS and useri, respectively. Note that the Kronecker correlation
model can be seen as a special case of the general model
(4), with d({b(i), u(i)}, {b(j), u(j)}) = α‖xb(i) − xb(j)‖

2 +
β‖xu(i) − xu(j)‖

2. Furthermore,ρ is a simulation variable
for evaluating the performance of our algorithm with different
channel statistics. In addition the RSRP uncertaintyσ is
used as a simulation variable to show the performance under
different noise levels.

In the simulation, 15 BSs and 50 users are randomly
distributed in a square area with a length of 10 km. Users are
assigned to the closest BS, while the other BSs are interfering
nodes in the downlink and interfered by the other users in the
uplink. An example of the simulation topology is depicted in
Fig. 1, where the path loss ranges between−126 dB and−76
dB. The other values used in the simulation are listed in Table
I.

Numerical results are shown in Fig. 2 and 3, respectively,
for the linear and the logarithmic model. We compare the
MSE obtained by the (LL)MMSE and (LL)LS estimators as
a function of the RSRP uncertainty varianceσ2

RSRP
and of

the channel varianceρ. Note that, in the logarithmic model,
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Fig. 2. MMSE and LS performance with the linear model (i.e. both the
channel gain vector and the vector of measurement uncertainties are normally
distributed): (a) vs.σ2

RSRP
, with ρ = 0.2; (b) vs.ρ, with σ2

RSRP
= 3 · 104 .
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Fig. 3. MMSE and LS performance with the logarithmic model i.e. both the
channel gain vector and the vector of measurement uncertainties have log-
normal distributions): (a) vs.σ2

RSRP
, with ρ = 1.5 · 10−4 dB; (b) vs.ρ, with

σ2

RSRP
= 1.3 · 10−5 dB.

such variances apply to values in dB. The results show that
in both cases the MMSE estimators behave according to the
theory and outperform LS estimators. The gap vanishes for
low noise uncertainty (Fig. 2 (a) and Fig. 3 (a)) because
with sufficiently small diagonal elements ofD, the solution
of (LL)MMSE converges to the solution of (LL)LS. The
same conclusion can be drawn for the case with high channel
variance (Fig. 2 (b) and Fig. 3 (b)): ifCh is very large, we
can neglectD so that (LL)MMSE and (LL)LS yield the same
solution. Figure 3 shows the performance is still consistent
when linearization is applied, except for very high channel
variance where the approximation by the first-order Taylor
expansion in (20) becomes inaccurate.

VI. N UMERICAL COMPLEXITY

From the numerical point of view, we remark that the linear
system (under both models) is well conditioned as long as the
number of available measurements is≥ K, so that matrixW
(or W) is “tall”. Since the number of RSRP measurements is
K, such requirement is always satisfied if RSRP measurements
are available for all BS-UE pairs.

The numerical complexity is dominated by the inversion of
a matrix of size(K +KB +KU)× (K +KB +KU), which
has complexityO((K + KB + KU)

3). Note that in practice
decomposition methods (e.g. QR factorization) are used for
the solutions of linear systems without explicitly inverting the

matrix. A cubic complexity in the number of measurements
may be affordable if interference estimation is performed in a
centralized way. In future research, more efficient distributed
methods will be investigated for a possible decentralized
implementation.

VII. C ONCLUSIONS

We have proposed two MMSE estimators for interference
identification in LTE networks, assuming first an idealized
linear Gaussian model and then a more realistic log-normal
model. Both estimators are expressed in closed form. The
second estimator achieves good performance provided that
the channel fluctuations are not too far from the prior mean.
Thanks to the logarithmic formulation, it is robust against
numerical problems (overflow/underflow) and is suitable for
practical implementation. Compared to iterative approaches,
e.g. [8], the proposed solution enables real-time estimation of
the interference coefficients and exploits the available prior
information, namely spatial channel correlation and measure-
ment uncertainty statistics.

The proposed approach can be extended to the case of se-
quential estimation (an extended Kalman filter can be derived
using the same linearization as in Section IV). Distributed
implementation may be investigated as well, exploiting the
problem sparsity (every measurement only depends on a subset
of elements ofh).
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Oct. 2011. Available at http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-
71156

[8] K. Oltmann, R. L. G. Cavalcante, S. Stanczak, “Interference Identifica-
tion in Cellular Networks via Adaptive Projected Subgradient Methods,”,
2013, submitted.

[9] LTE Evolved Universal Terrestrial Radio Access (E-UTRA), Physical
layer Measurements (3GPP TS 36.214 version 10.1.0 Release 10), 2011.

[10] C.G. Khatri, C.R. Rao, “Solutions to some functional equations and their
applications to characterization of probability distributions,” Sankhyia,
vol. 30, pp. 167-180, 1968.

[11] J. P. Kermoal, L. Schumacher, K. I. Pedersen, P. E. Mogensen, F. Fred-
eriksen, “A stochastic MIMO radio channel model with experimental
validation,” IEEE Journal on Selected Areas in Communications, vol.
20, no. 6, pp. 1211-1226, Aug 2002.


