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Abstract—A multi-cell minimum power beamforming problem
is considered. It is known that the inter-cell interference (ICI)
terms couple the base stations (BS) and inter-cell coordination
is required for global optimal solution. The cooperation can be
realized by exchange of instantaneous channel state information
(CSI) or terms related to the ICI values via a backhaul link.
However, the limited backhaul capacity and delay constraints put
a limit on achievable performance when the number of antennas
and users grow large or when dealing with a fast fading scenario.
In this work, we demonstrate that the ICI terms coupling the
coordinating BSs can be approximated using the random matrix
theory (RMT) tools when the problem dimensions grow large,
and that the approximated ICI values depend only on channels
statistics, i.e., spatial load and user specific path loss values. This
leads to a significant reduction in the information exchange rate
among BSs. Furthermore, processing is simplified because with
a fixed approximated ICI values the beamforming vectors can be
obtained locally at each BS. The proposed solution guarantees
the feasibility of the target signal-to-interference-plus-noise ratios
(SINR) without any major loss of performance as compared to
the optimal centralized design.

I. INTRODUCTION

Coordinated multi-point transmission (CoMP), which is
already considered in 3GPP standard, has been studied widely
for cellular systems. CoMP allows cooperation and coordi-
nation between nodes for delivering services to users which
results in greatly improved optimization objective values as
compared to the non-coordinated transmission [1]. In order to
realize the gains in practice, the coordinating base stations
must share some information. The coordination can be di-
vided in two categories; joint transmission and coordinated
beamforming/scheduling. Joint transmission from several co-
ordinating nodes, also called as network MIMO [2], ideally
provides the largest improvement of the network optimization
objective. However, it requires the user data and the channel
state information (CSI) to be shared between the coordinated
nodes making the practical implementation often difficult,
especially when dealing with a large number of users and
serving nodes scattered in a large network. As an alternative
approach, the coordinated beamforming/scheduling can be
considered, where the user data is just available in its serving
node and decisions about beamforming/scheduling are made
jointly by sharing some CSI information [3]. Maximizing a
network optimization objective, subject to some additional
quality of service constraints usually results in an iterative
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distributed solution which requires exchange of some limited
information between nodes at each iteration [3]–[8].

Coordinated multi-cell minimum power beamforming ap-
proach satisfies a given signal-to-interference-plus-noise ratio
(SINR) for all users while minimizing the total transmitted
power, which not only fulfills the quality of service for all
users, irrespective of their distances, but also minimizes the
interference level in general. Authors in [7] solve this problem
using the duality in convex optimization theory which is shown
to be linked to the concept of uplink-downlink duality. These
solutions do not require sharing the user’s data; however,
the nodes should exchange their local user’s instantaneous
CSI. Sharing instantaneous CSI between nodes under a delay
constraint and limited backhaul capacity becomes a principal
problem when dimensions of the problem (number of antennas
N and number of users K) grow large or when dealing with a
fast fading scenario. Authors in [9] have extended the work in
[7] for a large dimension system where random matrix theory
(RMT) is utilized to give approximate beamformers at each
BS, which rely only on the local CSI and average channel
statistics (spatial load, pathloss information) from the other
BS channels. However, the target SINR feasibility cannot be
guaranteed as the error in approximations is translated into
variation in the resulting SINR values.

In [8], [10], [11], an alternative decentralized framework
is proposed for the coordinated multi-cell minimum power
beamformer design problem. The optimal minimum power
beamformers can be obtained locally at each base station (BS)
relying on limited backhaul information exchange between
BSs. The proposed method is able to guarantee feasible
solutions even if the interference information is outdated or
incomplete. As alternatives to convex optimisation solutions,
iterative fixed-point algorithms based on, for example, La-
grangian duality theory have been developed for solving local
optimization problems at each BS [11].

In this work, the focus is on large-scale multiple antenna
wireless systems with a large number of low-power antennas
co-located at the BS site, often called as massive MIMO [12],
[13]. One important benefit of such a setting is that some
of the analysis can be carried out using tools from random
matrix theory (RMT) [13]. It was shown in [12] that with very
large imbalance N >> K, the processing can be simplified
in a way that even matched filter (MF) and zero-forcing
(ZF) can be used in an ideal i.i.d. channel for near optimal
detection and beamforming [12], [13]. However, in practical
multi-cell environments with non-ideal, correlated channels,



the use of more complicated precoder design algorithms is
justified as the performance gains compared to simple MF or
ZF based schemes are still significant. We propose a novel
approach for decoupling the subproblems at base stations.
Following the same logic as in [8], inter-cell interference
(ICI) is considered as the principal coupling parameter among
BSs. We use a large dimension approximation for ICI term
based on random matrix theory which leads to a distributed
beamforming algorithm. This algorithm gives the feasible
beamforming vectors at each BS based on the local CSI only,
while the coupling ICI terms are based on acquired channel
statistics (spatial load, propagation loss values) from the other
BS channels. The proposed algorithm benefits from the large
dimension simplifications and performance gains due to the
limited coordination between nodes which results in almost
optimal transmit powers along with significant reduction in
the backhaul exchange rate.

II. SYSTEM MODEL

A cellular system is considered which consists of NB BSs,
each BS has Na transmit antennas. Each user has a single
receive antenna. Users allocated to the bth base station are in
set Ub. Each user is served by a single base station and the
BS that serves user k is denote by bk. Sets of all users and all
BSs are presented by U and B respectively. The signal for user
k consists of the desired signal, the intracell and the intercell
interference which can be presented as follows,

y[k] = hbk,kxb,k+hbk,k
∑

l 6=k∈Ubk

xb,l+
∑
b6=bk

hb,k
∑
l∈Ub

xb,l+nk

(1)
where nk ∼ CN (0, N0) is the noise with power density N0.
hb,k ∈ C1×Na represents the channel from the bth BS to kth

user. The elements of channels are assumed to be Gaussian
distributed and the path-losses a2b,k are included in the channel
vectors, i.e, hb,k ∼ CN (0, a2b,kINa). xb,k = wb,kdk is the
transmitted vector from the bth BS to kth user, in which dk
is the normalized complex data symbol (E[|dk|2] = 1) and
wb,k ∈ CNa is the downlink beamforming vector from the bth

BS to kth user.

III. PROBLEM FORMULATION

The optimization problem for achieving the optimal down-
link beamformers as proposed by [8] can be presented as

minimize
wb,k,εb,k

∑
b∈B

∑
k∈Ub

‖wb,k‖2

subject to Γk≥γk ∀k ∈ Ub,∀b,∑
l∈Ub

|hb,kwb,l|2 ≤ ε2b,k,∀k 6∈ Ub,∀b,
(2)

where the intercell interference from bth base station to user k
is denoted by ε2b,k, and where

Γk =
|hbk,kwbk,k|2

N0 +
∑
l∈Ubk\k

|hbk,kwbk,l|2 +
∑
b 6=bk ε

2
b,k

(3)

This formulation highlights the role of intercell interference
in coupling the beamforming subproblems at base stations.
Note that both the SINR and the ICI constraints hold with
equality at the optimal solution. The optimization problem
defined by (2) can be formulated as a second order cone
problem (SOCP) and be solved in a centralized manner by
using convex optimization tools [8].

A. Decentralized solutions via optimization decomposition
The centralized problem in (2) is decoupled among BSs as

soon as the ICI terms εb,k are set to fixed values. In [8], the
coupling is handled by taking the local copies of the inter-
ference terms at each BS and enforcing consistency between
them. Then, the consistency constraints become decoupled by
applying a standard dual decomposition approach that results a
distributed algorithm. The decentralized algorithm can follow
the optimal solution in a time correlated scenario by exchang-
ing the ICI terms while the channel realizations change. There
are also alternative decentralized solutions based on primal
decomposition [10], [11] and alternating direction method of
multipliers (ADMM) [14].

B. Solution via uplink-downlink duality
Another approach for solving the optimization problem

defined by (2) is based on uplink-downlink duality. Authors
in [7] have shown that the problem dual to (2) which gives
the optimal uplink power allocation and detection vectors is
defined as follows

minimize
ŵ,λ

∑
b∈B

∑
k∈Ub

λkN0

subject to
λk|ŵH

bk,k
hH
bk,k
|2∑

l 6=k λl|ŵH
bl,l

hH
bl,k
|2 + ‖ŵbk,k‖2

≥γk ∀k∈U

(4)
The dual uplink power of the kth user is denoted by λk that
its optimal value can be calculated by a fixed point iteration
[7]

λk =
1

(1 + 1
γk

)hbk,k(Σbk + I)−1hH
bk,k

(5)

where
Σb =

∑
l∈U

λlh
H
b,lhb,l (6)

The dual uplink detection vector ŵb,k is given by the minimum
mean square error receiver at the optimal point [7], i.e,

ŵb,k = (Σb + I)−1hH
b,k (7)

A link between the downlink and uplink beamformers is
provided by the following equation [7]

wbk,k =
√
δkŵbk,k (8)

where wb,k is the downlink beamformer for the kth user and
δk can be found by the following matrix inversion [7]

Gi,j =

{ 1
γi
|ŵH

bi,i
hH
bi,i
|2 i = j

−|ŵH
bj ,j

hH
bj ,i
|2 i 6= j.

(9)

Finally,
δ = G−11Nu (10)



where δ is a vector that contains all δk values and 1Nu is a
Nu× 1 vector with all elements equal to one.

The above set of equations defines an algorithm which
gives the optimal power allocation and beamformers for the
downlink (2) and uplink (4) problems. However, the final step
of this algorithm in (10) requires a global knowledge about
the CSI which makes its distributed implementation difficult,
especially when dealing with a large number of users and
antennas.

IV. DECENTRALIZED APPROACH FOR LARGE DIMENSION
SYSTEM

In this section we introduce our decentralized algorithm for
a system with large dimensions based on the approximated
ICI thresholds. It is known that the growing dimensions of a
random matrix results in some deterministic behaviors about
the distribution of its eigenvalues that can be utilized for
processing simplifications [15]. Authors in [9] have considered
a system with large dimensions, i.e., large number of users
and antennas. In addition, they assume that the variances of
channel entries are scaled by the number of antennas. This as-
sumption allows deriving a large dimension approximation for
(5), (9) and (10) that results in a decentralized beamforming
approach which relies on local CSI and the average statistics
of the other channels. According to [9], an approximation for
the optimal uplink power defined by (5) can be formulated as

λk = ((1 +
1

γk
)(

a2bk,kmΣbk
(−1)

1 + a2bk,kλkmΣbk
(−1)

))−1 (11)

where, a2bk,k is the pathloss from the kth user to its serving base
station. Σbk is defined by (6) and mΣbk

(−1) is the Stieltjes
transform of the Gram matrix Σbk at point z = −1 as defined
by Theorem A-2 in the appendix.

Similarly, the matrix inversion for δk values can be approx-
imated by [9]

Gi,j =


1
γi

(
a2bi,i

mΣbi
(−1)

ηbi,i
)2 i = j

−1
Na

a2bj,i
a2bj,j

m′
Σbj

(−1)

η2bj,i
η2bj,j

i 6= j
(12)

where

ηbj ,i = 1 + a2bj ,iλimΣbj
(−1) (13)

and where m′Σb
(−1) is the differential of mΣb

(z) with respect
to z at point z = −1 (see the Appendix).

Under the large dimension assumption, the beamforming
vectors in (8) can be found using locally acquired channel
knowledge and approximated dual uplink powers (11) and
cross-coupling matrix (12) instead of (5) and (9), resulting in
a distributed beamforming algorithm. However, the problem
with the approximated method is that it cannot guarantee the
target SINRs for finite number of antennas as the error in
approximations is translated into variations in the resulted
SINRs which can be less or more than the target SINRs.

A. Approximation of intercell interference terms

The method proposed here relies on approximately optimal
ICI values instead of approximated uplink powers as in [9].
The approximate ICI values remain valid for a given set of
users until a change occurs in the statistics of the channel,
i.e., when a user changes its location. This leads potentially
to a significant reduction of the required backhaul signaling
depends only on the large scale parameters, i.e. pathloss
between each BS and active node.

The large dimension approximation for ICI terms can be
achieved by using (11), (12) and (8). From (2) and (3), it is
clear that the intercell interference from all the base stations
towards user k is∑

b 6=bk

ε2b,k =
∑
b∈Bk

∑
l∈Ub

|hb,kwb,l|2 (14)

where, the intercell interference term from the bth base station
to user k is,

ε2b,k =
∑
l∈Ub

|hb,kwb,l|2 (15)

Considering (8), the intercell interference term in (15) can
be written as follows,

ε2b,k =
∑
l∈Ub

√
δb,l|hb,kŵb,l|2 (16)

where δb,l values can be found from (10) and the approxima-
tion for the cross-terms |hb,iŵb,j |2 are defined by (12),

|hb,iŵb,j |2 ≈
1

Na

a2bj ,ia
2
bj ,j

m′Σbj
(−1)

η2bj ,iη
2
bj ,j

i 6= j (17)

Therefore, the ICI from the bth BS to the kth user can be
written as,

ε2b,k =
∑
l∈Ub

√
δb,l

1

Na

a2bl,ka
2
bl,l
m′Σbl

(−1)

η2bl,kη
2
bl,l

(18)

This approximation allows derivation of approximate op-
timal ICI based on statistics of the user channels. Each BS
needs knowledge about user specific average statistics, i.e.,
pathloss values from other BSs based on which each BS can
locally and independently calculate the approximately optimal
ICI values.

B. Distributed beamforming based on approximated ICI val-
ues

Using any fixed ICI value in (2) is a special case that
results in a suboptimal performance in general. In [8], [10],
[11], an agreement on optimal fixed ICI values is achieved
via exchange of scalar ICI parameters, i.e., local copies of ICI
terms or corresponding dual variables. Another straightforward
decentralized approach is to enforce all inter-cell interference
to zero [8]. In all cases, however, the intra-cell interference
between local users can be optimally handled. Solving (2) with
the approximated ICI values εb,k developed in the previous
subsection leads to an algorithm that benefits from both of
the locally optimal beamforming design and near optimal ICI



knowledge. This property brings significant gains compared to
other suboptimal methods like inter-cell interference nulling.
The proposed algorithm is summarized in Algorithm 1.

Algorithm 1 Approximation of the ICI values.

1: Initialize the ICI values based on the exchanged pathloss
values

2: loop
3: if Any change in the user statistics then
4: Exchange the updated pathloss values ab,k among

coupled BSs.
5: Update the approximated λk values, mΣbk

(−1) and
its derivative from (11) and Theorem A-2.

6: Get approximated δ values from (10).
7: Update the approximated ICIs based on (18).
8: end if
9: Use the approximated ICIs as a fixed ε2b,k in (2) and

solve the subproblems locally for getting the optimal
downlink beamformers.

10: end loop

The local problems can be solved by reformulating (2)
as BS specific SOCP or solved iteratively as in [11]. The
proposed algorithm guarantees the target SINRs because the
feasible solution of the optimization problem defined by (2)
always satisfies the constraints and the possible error in
approximations is translated into a somewhat higher transmit
power at BSs compared to the optimal centralized solution.

V. NUMERICAL ANALYSIS

The algorithm developed in the previous section satisfies
the target SINRs for all users; however, the error in approx-
imations results a higher transmit power at BSs. In order to
evaluate the difference between the optimal transmit power
and the power resulted from the approximated algorithm, an
extensive multi-cell simulation study is carried out in this
section. A network with 7 cells is considered and users are
scattered on the coverage area of the network, in a way that
each cell contains 4 users. Exponential pathloss model is used
for assigning the pathloss to each user.

ab,k = (
d0
db,k

)2 (19)

where db,k is distance between base station b and user k.
The pathloss exponent is 2 and the reference distance (d0)
is 1m. The pathloss from a base station to the boundary of the
reference distance of the neighboring base station is 50dB. The
users are dropped randomly for each trial and in total 1000
user drops are used for calculating the average transmit power.
Fig. 1 depicts the network with 7 cells and the users dropped
on the coverage area.

Figs. 2 and 3 illustrate the transmit powers versus the num-
ber of antennas for 0dB and 10dB SINR target, respectively.
The fading characteristics per antenna is i.i.d. It is clear that the
gap between the approximate and optimal algorithm (denoted
as SOCP) diminishes as the number of antennas increases.
When the number of antennas is equal to 28 the gap is less

Fig. 1: A Network with 7 Cells

Fig. 2: Required transmit power for 0 dB SINR target.

than 0.5dB which indicates that the approximate algorithm
provides a good solution for the practical scenarios with a
limited number of antennas. The gap for the case with 0dB
SINR in Fig. 3 does not exceed 1dB even when number of
antennas is smaller than 28, however, for the case with 10dB
SINR target, the approximated case becomes infeasible.

In Fig. 4, the transmit powers resulting from other sub-
optimal methods, such as matched filter (MF) and zero-
forcing (ZF) are compared with the optimal centralized case
and the approximately optimal case. From this figure it is
clear that SOCP algorithm and the approximate ICI algorithm
outperform the ZF over a wide range of number of antennas
even in the ideal case with i.i.d fading statistics. The gap in
performance is mainly due to the fact that the ZF algorithm
wastes a degree of freedom for nulling the interference towards
the distant users while the SOCP algorithm finds the optimal
balance between interference suppression and maximizing the
desired signal level. MF beamforming must be dealt with
more care since the SINR target can be guaranteed only
asymptotically, i.e., when the number of antennas approaches
infinity. The increasing curve in Fig. 4 shows the resulting



Fig. 3: Required transmit power for 10 dB SINR target

Fig. 4: Comparison of required transmit power for 0 dB SINR
target

SINR when simple MF beamforming is used. For a small
number of antennas, the resulted SINR is well below the
target and by increasing the number of antennas it approaches
the target SINR. Nevertheless, the achieved SINR is 0.5 dB
below the target SINR even for 120 antennas at each base
station even though the transmit powers for the optimal and
the MF beamforming are almost the same. The gap between
ZF and SOCP schemes also depends on target SINR. For high
target SINR values, the optimal strategy approaches the ZF
beamforming. The performance difference decreases fast in
i.i.d channel when the number of antennas increases as shown
in Fig. 5.

Figs. 2–5 consider an idealistic scenario with i.i.d. fading
characteristics per antenna. In practice, however, non-zero
correlation and coupling among antenna elements, imperfect
CSI and hardware, non-ideal medium, etc. must be taken
into account in order to make a realistic comparison. In

Fig. 5: Comparison of required transmit power for 10 dB SINR
target

Fig. 6: Comparison of required transmit power for 0 dB SINR
target with ρ = 0.9 correlation between adjacent antennas.

Fig. 6, the effect of correlation among antenna elements is
considered by using a simple Kronecker channel model with
correlation factor 0.9 between adjacent antenna elements. It
can be seen from Fig. 6, the correlation increases the gap
between SOCP and ZF approaches even further. Therefore,
the use of advanced beamforming schemes can be justified
even when the size of antenna array becomes large.

VI. CONCLUSIONS

Intercell interference is a key parameter in the design of
distributed beamforming algorithm as it couples the sub-
problems at base stations. In this work, a large dimension
approximation for the optimal ICI has been considered. Ac-
cording to this approximation an algorithm has been proposed
for decoupling the subproblems at base stations which results
in a significant reduction in backhaul information exchange



rate and processing load. This algorithm guarantees the target
SINRs without any major loss of performance as compared to
the optimal centralized design as the dimensions of the system
grow large. Massive MIMO with a practically limited array
size is an example of a system where the proposed algorithm
can be utilized.

APPENDIX

For the convenience of the reader, some important lemmas
and theories from random matrix theory are briefly summa-
rized. At first Stieltjes transform is introduced:

Definition A-1. [15], Assuming a real valued bounded mea-
surable function over R denoted by F , the Stieltjes transform
of F for z ∈ Supp(F )c is defined as:

mF (z) =

∞∫
−∞

1

λ− z
dF (λ) (20)

F can be any function that satisfies the specified condition
in Definition A-1. However, for studies here, F is the empirical
spectral distribution (e.s.d.) of a N×N Hermitian matrix YN

defined for x ∈ R as,

F (x) =
1

N

N∑
j=1

1λj≤x(x) (21)

Where λ1, ..., λN are eigenvalues of YN . 1λj≤x is the
indicator function which gives 1 when λj is less than x and
0 otherwise.

Then, for the hermitian matrix YN it is known that,

mF (z) =
1

N
tr(Y − zIN)−1 (22)

The following theorem gives the equations for deriving an
equivalent of Stieltjes transform of Gram matrix YYH.

Theorem A-2. [9] [16], Consider a N × n random matrix
denoted by Y, such that elements of Y are independent and
zero mean. The variance of entries is given by E[|yi,j |2] =
α2
i,j which are uniformly bounded from above. Also some soft

restrictions are assumed over higher moments. then,

1

N
tr(YYH−zIN)−1− 1

N
tr(Θ(z))

n → ∞, N
n

→ c

−−−−−−−−−→ 0,∀z ∈ C−R+

(23)
Where Θ(z) = diag(θ1(z), ..., θN (z)) is a deterministic

matrix valued function, analytic in C − R+. The entries of
this function can be found by initializing and iterating the
following system of N + n equations:

θi(z) =
−1

z(1 + 1
n

n∑
j=1

α2
i,j θ̂j(z))

∀1 ≤ i ≤ N (24)

θ̂j(z) =
−1

z(1 + 1
n

N∑
i=1

α2
i,jθi(z))

∀1 ≤ j ≤ n (25)

The derivative of Stieltjes transform of the
matrix YYH is given by 1

N tr(Θ
′(z)). Where

Θ′(z) = diag(θ′1(z), ..., θ′N (z)). The entries can be found by
solving a system of equation resulted from taking derivatives
of (24) and (25) with respect to z [9].
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