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Abstract—In this paper, we investigate a joint uplink pilot
and data power allocation strategy for energy-efficient commu-
nications under pilot contamination in multi-cell multi-user mas-
sive multiple-input multiple-output (MU-Massive-MIMO) sys-
tems. Assuming the maximum-ratio combining detection and
a large number of antennas at the base station, the system
energy efficiency (EE) is maximized over the individual power
assignment between pilot and data transmissions of each user,
subject to the per-user signal to interference-plus-noise ratio
and per-user power constraints. To decentralize the optimization,
game theory has to be applied, in which each cell competes
against neighboring cells to maximize its own EE via fractional
programming. The existence and uniqueness of Nash equilibrium
of the game are discussed. Numerical results of the proposed
algorithm are compared with the uplink power control scheme,
which illustrates the significant advantage in EE by applying the
per-user power allocation in multi-cell MU-Massive-MIMO.

I. INTRODUCTION

Multi-user massive multiple-input multiple-output (MU-
Massive-MIMO) system with hundreds of antennas deployed
at the base station (BS), which operates in time-division
duplexing (TDD) mode, can serve a multiplicity of single-
antenna users at the same time-frequency resource, while
providing high throughput for each user and increased system
energy efficiency (EE) [1] [2]. In particular, under the favorable
propagation [3], any randomly selected channel vectors of
different users tend to become pairwisely orthogonal when
the number of BS antennas grows large. Therefore, in the
single-cell scenario, any simple linear receiver (e.g. maximum-
ratio combining (MRC)) is able to completely eliminate the
uncorrelated intra-cell interference and noise with unlimited
number of BS antennas [1]-[3].

However, when a multi-cell setup is considered, the chan-
nel state information (CSI) at the BS, which is estimated
through uplink training, is contaminated due to the inevitable
reuse of pilot sequences among neighboring cells [4]. This
presents a fundamental limitation of multi-cell MU-Massive-
MIMO system in practice, and deteriorates the throughput
of linear detection/precoding in both uplink and downlink
communications. Nevertheless, a considerable uplink EE is
still achievable, as the data transmit power of each user can be
reduced inversely proportional to the square-root of the number
of BS antennas while maintaining the same throughput [2].

Part of this work has been performed in the framework of the FP7 project
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authors would like to acknowledge the contributions of their colleagues in
METIS, although the views expressed are those of the authors and do not
necessarily represent the project.

In massive MIMO literature, e.g. [1]-[3], equal pilot and
data power assignment for all users has been always assumed,
which does not enable any power allocation scheme to improve
the system EE. Recently, the work in [5] [6] has considered
optimizing the downlink EE in single-cell setup: the focus of
[5] is on the resource allocation with massive BS antennas for
OFDMA; the massive MIMO design in [6] has assumed perfect
CSI; however in both results, the pilot power allocation is
not involved. While for massive MIMO in multi-cell scenario,
the algorithm in [7] has employed an uplink pilot and data
power control to minimize the total power consumption of
all users, which also leads to an increased EE. However, to
achieve the optimal uplink system EE by jointly allocating
pilot/data powers, a direct approach in which the system EE
is maximized as the target has to be specifically designed,
which motivates the work in this paper.

Therefore, we propose in this paper a joint pilot and data
power allocation scheme to improve the uplink system EE,
subject to the per-user signal to interference-plus-noise ratio
(SINR) and per-user power constraints. We take the pilot
contamination into account and apply the low complexity MRC
receive processing in order to avoid large matrix inversion.
To keep the scheme as decentralized as possible, we refer to
game theory, where each player (cell) is allowed to unilater-
ally optimize its own EE while keeping its rivals’ strategies
fixed. Moreover, as the received signal after MRC detection
is coupled with interference – even if massive BS antennas
are deployed, a maximum intra-cell interference temperature
has to be inserted to parallelize the optimization target of
each player [5]. This facilitates the design of efficient joint
power allocation based on fractional programming [8]. The
existence of the Nash equilibrium (NE) of the considered
game is proved; while the uniqueness of NE is analytically
indeterminate in general. The performance of joint power
allocation is compared with the power control strategy [7] in
simulations, where higher per-user SINR with a moderate sum
power consumption is achieved by employing the proposed
algorithm, thus demonstrates the attainable EE improvement
in multi-cell MU-Massive-MIMO systems.

II. SYSTEM MODEL

We consider the uplink of multi-cell MU-Massive-MIMO
system, where L cells – each with M antennas at the BS
serving K (K � M ) users in the same time-frequency
resource – operate in TDD mode. The matrix Gli = HliD

1/2
li

represents the flat-fading channel, and its k-th column, i.e.
glik =

√
βlikhlik, is the propagation vector from the k-

th user in cell i to the l-th BS. In particular, the diagonal



matrix Dli = diag {[βli1, . . . , βliK ]} ∈ RK×K describes
the real-valued path-loss and large-scale fading which are
assumed to be constant and known prior at the BSs, while the
vector hlik ∈ CM×1 consists of independent and identically
distributed (i.i.d.) complex Gaussian (CN (0, 1)) fast-fading
coefficients [3]. Moreover, the length of the channel coherence
interval for all cells is denoted as T (in symbols), which
in practice cannot afford orthogonal pilot sequences for all
users in the system. As a compromise, only the users in the
same cell transmit mutually orthogonal pilot sequences of
length τ ≥ K, however, the same set of pilots is reused in
the neighboring cells1. Denoting the pilot and data transmit
power of all users in cell i in diagonal matrices as Pr,i =
diag {[pr,i1, . . . , pr,iK ]} and Pp,i = diag {[pp,i1, . . . , pp,iK ]},
respectively, the received signal within a coherence interval at
BS l is given as

[Yp,l Yr,l] =

L∑
i=1

Gli

[√
τP

1/2
p,i ΦH P

1/2
r,i XH

i

]
+ Nl (1)

where Yp,l ∈ CM×τ and Yr,l ∈ CM×(T−τ) are the re-
ceived signal of pilot and data transmissions respectively,
Φ ∈ Cτ×K denotes the (reused) pilot set from K users such
that ΦHΦ = IK , Xi ∈ C(T−τ)×K contains data symbols
from cell i, which are i.i.d. with zero mean and unit variance,
and Nl ∈ CM×T has i.i.d. CN (0, 1) elements representing the
uncorrelated normalized uplink noise.

A. Channel Estimation and MRC Receive Processing

Relying on the received uplink training matrix Yp,l in (1),
the standard MMSE channel estimation is given by [9]

Ĝli = Yp,lΦ

(
IK + τ

L∑
j=1

DljPp,j

)−1
√
τDliP

1/2
p,i . (2)

It is straightforward to notice that except for the term DliP
1/2
p,i

the rest part in (2) remains the same for all channel estimates
Ĝli,∀i = 1, . . . , L, which reflects the impact of reusing the
same set of pilot sequences among cells and results in the
so-called pilot contamination problem [4].

Based on the channel estimate in (2), the MRC processed
signal at BS l for detecting the t-th (τ+1 ≤ t ≤ T ) transmitted
data symbol from its k-th user is given by rlk = ĝHllkyr,l(t),
where ĝllk and yr,l(t) denote the column vectors of Ĝll and
Yr,l, respectively. Similar to the manipulations in [2], the post-
processing SINR θMRClk is used to yield the uplink achievable
ergodic rate, i.e. RMRC

lk = E{log2(1 + θMRClk )}, which can be
lower bounded by exploiting the convexity of log2(1 + 1/x)
and Jensen’s inequality as

RMRC
lk ≥ R̃MRC

lk , log2(1 + θ̂MRClk ) (3)

where θ̂MRClk ,
(
E
{
1/θMRClk

})−1
, shown in (4) at the top of next

page, can be also treated as the lower bound of the average
SINR of user k in cell l, since E

{
1/θMRClk

}
≥ 1/E {θMRClk } [7].

1In principal, different cells can use different sets of pilot sequences,
however this results in the effect of averaging the interference from all users
in neighboring cells, which persists the pilot contamination [1].

B. System Energy Efficiency

For the uplink transmission with MRC detection in a
coherence interval T , the EE of user k in cell l is defined as the
spectral efficiency T−τ

T R̃MRC
lk divided by the average transmit

power per symbol 1
T (τpp,lk + (T − τ)pr,lk), i.e.

ηMRClk ,
T−τ
T R̃MRC

lk
1
T (τpp,lk + (T − τ)pr,lk)

=
R̃MRC
lk

pr,lk +
τ

T−τ pp,lk
. (6)

Since the transmit powers of different users cannot be shared
between each other and so are their data throughput and EE,
we define the system EE of multi-cell MU-Massive-MIMO as
the summation over individual EEs of all users, i.e.

ηMRC ,
L∑
l=1

ηMRCl =

L∑
l=1

K∑
k=1

ηMRClk (7)

where ηMRCl ,
∑K
k=1 η

MRC
lk is the sum EE in cell l [2].

Remark 1. Unlike the downlink BS power consumption model
in [5] [6], we do not consider the power consumed by the
transceiver chain at the BSs which may scale with M and K,
as our focus in this paper is the joint allocation of pilot and
data transmit powers of all users in the uplink.

C. Optimization Problem Formulation

Similar to [2], we consider here the minimum length of pi-
lot sequences, i.e. τ = K. By defining pr ,

[
pTr,1, . . . ,p

T
r,L

]T
with pr,l , [pr,l1, . . . , pr,lK ]

T and pp ,
[
pTp,1, . . . ,p

T
p,L

]T
with pp,l , [pp,l1, . . . , pp,lK ]

T , we introduce the optimization
problem for energy-efficient uplink communication as

maximize
(pr,pp)

ηMRC (pr,pp) (8)

subject to θ̂MRClk ≥ γlk
Kpp,lk + (T −K)pr,lk ≤ Plk

∀(l, k)

where the system EE in (7) is maximized with respect to (w.r.t.)
the joint selection of pilot and data powers, while fulfilling the
per-user SINR γlk and transmit power Plk constraints. Note
that Plk may be interpreted as the energy budget per coherence
interval if T and τ are counted in time instead of symbols.
For the sake of brevity, we do not explicitly list the power
constraint pr,pp > 0, nevertheless it is in fact considered
throughout the paper.

III. GAME THEORY ON EE MAXIMIZATION

In this section, we reformulate the system EE maximization
based on the non-cooperative game, in which each player’s
optimization problem is further modified in order to be solved
by fractional programming.

A. Reformulation of EE Maximization via Game Theory

To avoid the cooperation among cells which is required
in solving the maximization problem in (8), we refer to a
non-cooperative approach in game theory, where each cell
acts as a player and tries to maximize its EE unilaterally,
while assuming fixed resource allocation in neighboring cells,
until a NE2 of the game is achieved [10]. Hence we define a

2A NE of the non-cooperative EE maximization game is a set of power
allocation that no cell can unilaterally improve its own EE by selecting a
different set of pilot/data powers [10, Def. 1].



θ̂MRClk =
(M − 1)pr,lkpp,lkβ

2
llk

(M − 1)
∑L
i 6=l pr,ikpp,ikβ

2
lik +

(∑L
i=1

∑K
κ=1 pr,iκβliκ + 1

)(∑L
i=1 pp,ikβlik +

1
τ

)
−
∑L
i=1 pr,ikpp,ikβ

2
lik

(4)

,
(M − 1)pr,lkpp,lkβ

2
llk

(M − 2)Irp,−l +
(∑K

κ6=k pr,lκβllκ + Ir,−l

)
(pp,lkβllk + Ip,−l) + pr,lkβllkIp,−l

(5)

game GMRC consisting of L players, in which the optimization
problem of the l-th player (cell) is to determine, for given
feasible (pr,i,pp,i)

L
i 6=l, a solution (pr,l,pp,l) in order to

maximize
(pr,l,pp,l)

ηMRCl (pr,l,pp,l) (9)

subject to θ̂MRClk ≥ γlk
Kpp,lk + (T −K)pr,lk ≤ Plk

∀k

where ηMRCl (pr,l,pp,l) depends only on the power allocation
of users in cell l.

Accordingly, we can rewrite the denominator of θ̂MRClk ,
as shown in (5), where Ir,−l ,

∑L
i 6=l
∑K
κ=1 pr,iκβliκ + 1,

Ip,−l ,
∑L
i 6=l pp,ikβlik +

1
K and Irp,−l ,

∑L
i 6=l pr,ikpp,ikβ

2
lik

comprise solely the inter-cell contribution and can be hence
treated as constant in the l-th player’s optimization problem.
However, the remained term

∑K
κ6=k pr,lκβllκ, which consists of

the interference from intra-cell users, correlates the k-th θ̂MRClk

(so as R̃MRC
lk and ηMRClk ) with all other users in the same cell.

Therefore, the optimization target ηMRCl in (9), which is the
sum of multiple fractional terms, cannot be parallelized, i.e.
max

∑K
k=1 η

MRC
lk 6=

∑K
k=1 max ηMRClk . This makes the problem

in general very difficult to solve.

B. Modified Game of EE Maximization

To this end, an additional constraint has to be introduced
to the l-th player’s problem in (9), i.e.

K∑
κ 6=k

pr,lκβllκ ≤ I, ∀k (10)

which acts as the maximum intra-cell interference temperature
[5]. Furthermore, replacing

∑K
κ 6=k pr,lκβllκ with I in (5) yields

θ̂MRClb,lk ,
(M − 1)pr,lkpp,lkβ

2
llk

pr,lkβllkIp,−l + pp,lkβllk(I + Ir,−l) + ι
(11)

where ι , (M − 2)Irp,−l + Ip,−l(I + Ir,−l) is irrelevant
of the transmit power allocation of the user considered.
It is easy to see that the updated feasible set X MRC

l =(pr,l,pp,l)

∣∣∣∣∣∣
θ̂MRClb,lk(pr,lk, pp,lk) ≥ γlk
Kpp,lk + (T −K)pr,lk ≤ Plk∑K
κ6=k pr,lκβllκ ≤ I

∀k

 has a re-

duced size, which results in a performance lower bound of
the original problem. Then, the achievable uplink data rate
of user k in cell l (cf. (3)) can be (further) lower bounded
by R̃MRC

lk > R̃MRC
lb,lk , log2

(
θ̂MRClb,lk

)
, which leads to a modified

maximization target for (9), i.e. η̂MRCl =
∑K
k=1 η

MRC
lb,lk with

ηMRClb,lk =
R̃MRC

lb,lk (pr,lk, pp,lk; Ir,−l, Ip,−l, Irp,−l, I)

pr,lk +
K

T−K pp,lk
. (12)

It is worth to note that for given interference temperature
I the value of ηMRClb,lk in (12) is decoupled from intra-cell users
(other than user k) in cell l. As a result, we can define a
modified game GMRCI , in which the optimization task of the l-th
player is to determine, with given (pr,i,pp,i)

L
i 6=l, a solution

tuple (pr,l,pp,l) ∈ X MRC
l , such that max η̂MRCl or equivalently

max ηMRClb,lk for all k is achieved.

Remark 2. Although the modification from the original game
GMRC to GMRCI may yield a solution which is sub-optimal, it
facilitates the design of an efficient power allocation based
on fractional programming in Section III-C, whose result can
be treated as the performance lower bound of the achievable
uplink system EE.

C. Fractional Programming in Game GMRCI

Since the optimization task of each player in game GMRCI
is equivalent to finding K optimal user EEs, which are all
in the fractional form with convex denominator and concave
numerator (cf. (12)), we can apply here an efficient parametric
convex fractional programming [8], such that the optimal EE
of user k in cell l, i.e. q∗lk , max ηMRClb,lk =

R̃MRC
lb,lk(p

∗
r,lk,p

∗
p,lk)

p∗r,lk+
K

T−K p
∗
p,lk

, is

attained, if and only if max ηMRCfp,lk (pr,lk, pp,lk; q
∗
lk)

!
= 0, where

the equivalent objective function ηMRCfp,lk is given as

ηMRCfp,lk , log2

(
(M − 1)pr,lkpp,lkβ

2
llk

pr,lkβllkIp,−l + pp,lkβllk(I + Ir,−l) + ι

)
− q∗lk

(
pr,lk +

K

T −K
pp,lk

)
. (13)

The “equivalence” here means that both maximizations result
in the same power allocation.

Moreover, as proved in [5], the function F MRC
lk (qlk) ,

max ηMRCfp,lk(qlk) is strictly monotonic decreasing in qlk, and
the inequality F MRC

lk (qlk) ≥ 0 holds true ∀qlk 6= q∗lk. Therefore,
the optimal (cell) EE of the l-th player in game GMRCI , i.e.
max

∑K
k=1 η

MRC
lb,lk =

∑K
k=1 q

∗
lk, is achieved, if and only if

max
∑K
k=1 η

MRC
fp,lk =

∑K
k=1 max ηMRCfp,lk (pr,lk, pp,lk; q

∗
lk)

!
= 0.

D. Sketch of EE Maximization Algorithm

Previous discussions imply that the solution to the orig-
inal system EE optimization in (8) can be approximated by
executing GMRCI in a two-loop algorithm as described below.

In the outer loop, game theory is applied, where each player
(cell) sequentially maximizes its own EE – by repeating its
inner loop with fixed strategies of other players – until a NE
is achieved. In particular, only the user geometry information
(i.e. βlik) has to be shared among the BSs in this loop, which
varies slowly in accordance with the coherence time.



While in the inner loop of each player, the cell EE is
optimized by maximizing K user EEs at the same time via
fractional programming, i.e.

maximize
(pr,lk(n), pp,lk(n))

ηMRCfp,lk (pr,lk(n), pp,lk(n); qlk(n)) ∀k

subject to (pr,l(n),pp,l(n)) ∈ X MRC
l (14)

in which the optimal user EE q∗lk is approached by iteratively

updating qlk(n + 1) =
R̃MRC

lb,lk(pr,lk(n),pp,lk(n))

pr,lk(n)+
K

T−K pp,lk(n)
with n denoting

the iteration index. This is usually referred to as the Dinkelbach
method, and its fast convergence (in approximate 6 circles) is
insured [5] [8].

E. Existence and Uniqueness of NE in Game GMRCI

Given that the l-th player’s optimization problem is feasi-
ble, the solution set X MRC

l is non-empty, convex and compact,
thus the existence of a NE in the game only depends on
the joint quasi-concavity of the objective function

∑K
k=1 η

MRC
lb,lk

w.r.t. the optimization variables pr,l and pp,l [10, Thm. 1].
Equivalently, we can also evaluate the Hessian matrix of the
fractional program

∑K
k=1 η

MRC
fp,lk for fixed q∗lk (cf. (13)), i.e.

H

(
K∑
k=1

ηMRCfp,lk

)
= diag

{[
H
(
ηMRCfp,l1

)
, . . . ,H

(
ηMRCfp,lK

)]}
(15)

where the k-th diagonal element H
(
ηMRCfp,lk

)
is the 2×2 Hessian

matrix of ηMRCfp,lk (w.r.t. pr,lk and pp,lk) and can be shown to be
negative definite (the proof is omitted here due to space limit).
Hence it follows immediately that H

(∑K
k=1 η

MRC
fp,lk

)
in (15) is

also negative definite, and the existence of a NE is guaranteed.

The uniqueness of the NE is analytically indeterminate [10,
Thm. 2], since the monotonicity and scalability of the k-th re-
sponse function of the l-th player’s power allocation, which is
defined as F MRC

R,lk (Ir,−l, Ip,−l, Irp,−l; q
∗
lk, I) , argmax ηMRCfp,lk,

cannot be evaluated. This results from the fact that the op-
timization variables (pr,lk, pp,lk) appear in the denominator
of the first term of ηMRCfp,lk in (13). Other approaches to verify
the uniqueness may exist, which is an interesting topic for
future work. Nevertheless, simulations carried out in Section
V empirically suggest a unique NE of game GMRCI .

IV. REVIEW OF UPLINK POWER CONTROL

The uplink power control problem, aiming at jointly min-
imizing the sum pilot and data power of all users subject to
the per-user SINR and power constraints, is given by

minimize
pr,pp

L∑
l=1

K∑
k=1

(Kpp,lk + (T −K)pr,lk) (16)

subject to θ̂MRClk ≥ γlk
Kpp,lk + (T −K)pr,lk ≤ Plk

∀(l, k).

To solve the above problem, the introduced algorithm in [7],
based on the alternating optimization approach [11], consists of
a main loop with two consecutive phases: in the pilot power
control phase, the pilot power is minimized for given data
power; while in the subsequent data power control phase, the
data power is minimized with the obtained pilot power; and

this process is repeated until the optimal pilot and data power
allocation is achieved.

For MRC detection, the per-user SINR constraint in both
phases can be formulated into vector inequalities, i.e. pp ≥
Ip(pp) and pr ≥ Ir(pr), where the interference functions
Ip(pp) and Ir(pr) are standard [7]. Therefore, an iterative
method, with np and nr denoting the iteration indices in
the corresponding phases, can be applied, i.e. pp(np + 1) =
Ip(pp(np)) and pr(nr+1) = Ir(pr(nr)). It leads to the fixed
point optimal solution for any initial power allocation. The
convergence of sequentially repeating pilot/data power control
phases is thus guaranteed and occurs when both pp and pr

cannot be updated within a main loop.

V. NUMERICAL RESULTS

In the simulation, we consider a L = 3 hexagonal cell
system with a radius of 1000 meters. Each cell contains K = 5
users, which are uniformly placed but at least 100 meters away
from the serving BS. For both own and cross channels, i.e.
Dli,∀(l, i), the path-loss exponent is set to 4 and the large-
scale fading is drawn from a log-normal distribution with zero
mean and 8 dB standard deviation. We assume that the inter-
cell interference of each cell comes exclusively from the other
two neighboring cells. The channel coherence interval spans
T = 200 symbols and the corresponding power budget is equal
for all users, i.e. ∀(l, k), Plk = P . As we pursue a balanced
load among users, the same target SINR γlk = γ,∀(l, k) is
applied. In the uplink power control, the initial pilot and data
powers are determined as ∀(l, k),Kpp,lk = 1

6P and (T −
K)pr,lk = 1

2P [7].
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Fig. 1. EE with γ = −5 dB vs. interference temperature.

First of all, the impact of interference temperature (cf. (10))
on the uplink system EE maximization is investigated. As
shown in Fig. 1, the obtained EE is concave w.r.t. the interfer-
ence temperature for different numbers of BS antennas M and
power budgets P , thus the optimal interference temperature
Iopt can be always acquired via efficient off-line search [5].
In addition, the value of Iopt is insensitive to the total power
limit (as extra power is clipped to maximize EE), we assume
hence for the rest of simulations that P = 23 dBm.

As shown in Fig. 2, the proposed power allocation is
by design superior than the power control in regard to the
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Fig. 2. EE with different γ vs. number of BS antennas: “EE Max” denotes
the result of proposed power allocation based on Iopt in game GMRCI .

TABLE I. ACHIEVED INDIVIDUAL SINR (IN dB) FOR M = 300.

Algo. Target SINR Max SINR Min SINR Average SINR
−5

EE Max 0 5.64 5.49 5.57
5
−5 −5 −5 −5

Pwr Ctrl 0 0 0 0
5 5 5 5

EE maximization, and the achieved optimal EE values are
insensitive to the target SINR, since the optimal solution of
(14) lies in the same interior point in spite of different feasible
sets confined by the given target SINR constraints3,4. Due to
the same reason, the obtained SINRs (e.g. as listed in Tab.
I for M = 300) are also identical for different target SINR
settings. On the other hand, the power control attains better EE
performance when the target SINR is increased, as it minimizes
the sum power by forcing all users to attain exactly the given
SINR target (see Tab. I), the EE is then increased for the
increment of sum consumed power (see the lower part of Fig.
3) being less than the growth in throughput.

Moreover, as depicted in the upper part of Fig. 3, for both
algorithms the optimal assigned power for pilot transmission
is much larger than the data power, since only the data trans-
mission benefits from massive BS antennas according to the
power-scaling law, whereas the uplink training has to be carried
out on a per-antenna basis [2]. Nevertheless, as verified in both
figures, deploying more antennas at the BS leads to less sum
power consumption and better EE results, which suggests that
massive MIMO combined with the proposed power allocation
and/or power control can be considered as a key technology
component for energy-efficient communications.

VI. CONCLUSION

In this paper we have proposed a joint uplink pilot and
data power allocation algorithm with MRC receiver in multi-
cell MU-Massive-MIMO systems. The algorithm is based on

3Only 1 global optimal solution is reached regardless of the initial powers,
which indicates the uniqueness of NE in game GMRCI in the settings considered.

4The comparison to the social optimal of game GMRC is out of scope, as
we focus on the EE maximization algorithm, which is applicable in massive
MIMO in practice, and its advantage over the existing power control scheme.
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Fig. 3. Power consumption with different γ vs. number of BS antennas: pilot
power, data power and sum power are shown separately.

non-cooperative game theory, in which the uplink system
EE (with modifications) is maximized via efficient fractional
programming. The proposed algorithm has been evaluated in
simulations, where the resulting EE distinctly outperforms the
uplink power control scheme. Moreover, the EE improvement
of joint power allocation becomes more prominent with in-
creased number of BS antennas, thus indicates the advantage of
deploying massive MIMO in energy-efficient communications.
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